Realizing UML Model Transformations with USE

Fabian Biittner! and Hanna Bauerdick?

1 University of Bremen, Computer Science Department, Database Systems Group
% University of Bremen, Center of Computing Technologies (TZI), Artificial
Intelligence Group

Abstract. The USE (UML-based Specification Environment) tool has
been successfully applied for model validation in the past. In our cur-
rent work, we are enriching the USE specification language with impera-
tive elements. We employ this extension as an assembler to realize UML
model (class diagram) transformations with USE in a flexible way: UML
transformations are described using a custom abstract language based on
object diagram-like patterns. These descriptions are automatically trans-
lated into the imperative USE extensions. Our approach aims to provide
a flexible instrument to experiment with different transformations and
transformation formalisms.

1 Introduction

In the last years, model transformation has become an increasingly important
field within software development. At the same time, the notion of a model
has become more or less a synonym for models in the object-oriented para-
digm. Today, the OMG is about to finalize the Query, Views, Transformations
(QVT) [OMGO6] specification, which aims to provide a set of standardized for-
malisms to transform one object-oriented model into another one.

We have successfully employed our USE tool [GR02] for validation of static
structure models in the past. In our current work, we are employing USE to
develop, apply, and validate model transformations. Although QVT is about to
be finalized soon, we feel that we still need more evidence on how well it fits for
different kinds of transformations. Our approach gives us a flexible instrument
to experiment with different transformations and transformation formalisms in
a common and accessible environment.

In earlier work, we utilized several ways to describe transformations of struc-
tural models [Biit05,BGO6]. As a central part, we have been working on a catalog
of transformations of OCL annotated UML class diagrams. In our current work,
we are now implementing this catalog based on our extension to USE. We started
with a very simple transformation language based on object diagram-like pat-
terns and regular expressions. Later, we realized a need for certain extensions
to this language to describe our transformation catalog with reasonable effort.
Due to the flexibility of our approach, this extensions could be realized quite
easily. We motivate the extensions here, too, because we feel that the underlying
problems may also occur in other model transformation scenarios.

On the technical level, we did two things: We first added a small imperative
OCL-based language to USE which can be used to define operations. We then
created a simple transformation language, based on UML diagrams and a few
elements of graph transformation [Roz97]. We then implemented a UNIX filter
like program which translates our transformations into the simple imperative
language. This way, we can employ USE as a “virtual machine” to execute and
validate transformations, under (potentially) various transformation formalisms.

Several other approaches to object-oriented model transformation ex-
ists. [CHO3] provides a general classification. Existing model transformation
frameworks include ATL [JKO05], the TopMODL initiative [MDFHO04], Model-
ware [Mod], and the graph transformation-based Fujaba [FUJ]. Our work also
resembles [MFJ05] and Kermeta [FDVFO06] as it adds executability to meta-
models.

This paper is structured as follows: In Sect. 2, we introduce our extension to
USE and our transformation language. We then take an excerpt (a “Many20ne”
transformation) of our transformation catalog to illustrate our approach in
Sect. 3. After describing Many2One in general, we show how we implemented
the transformation in USE. Section 4 concludes this paper.

2 Realizing UML Model Transformations with USE

In a nutshell, we are employing USE to apply transformations to UML models
— or more specifically, to UML class diagrams. Although USE directly supports
class diagrams (USE specifications are mainly class diagrams with constraints),
we represent them as object diagrams of the UML meta-model here. The USE
specification is provided by the UML 2.0 meta-model in our current work.

The two basic ideas of our approach are as follows: 1) The USE specification
language is extended to support imperative descriptions of operations. We achieve
this by enriching USE with a minimal object-oriented programming language
that can be used to modify a system state (i.e., an object diagram). This language
resembles the “ImperativeOCL” language of the upcoming QVT specification.
We employ this new feature of USE to formulate additional operations with
side-effects for the UML meta-model.

2) Transformations are applied to UML models by adding additional transfor-
mations objects to their meta-level representation. These transformation objects
provide operations that modify the model in the intended way. The operational
transformation semantics is located in explicit transformation meta-classes.

The remaining section explains this sketch in more detail.

2.1 Models Everywhere
Figure 1 shows an overall structural picture of our approach. It shows the differ-
ent involved modeling artifacts, which creates them, and how they are realized
using USE.

Starting in the lower left-hand corner, we locate the role of the modeler.
That is the origin of our initial model, an exemplary PersonCompany class di-
agram (which we will modify by means of model transformation in Sect. 3).

This class diagram is created as an instance of the UML meta-model (UM-
LOCL2 in Fig. 1) in USE. As the name suggests, UMLOCL2 actually com-
bines the UML2 and OCL2 meta-models into one meta-model. It is defined
as a USE specification (UMLOCL2.use). So far, this specification does not re-
quire any of the extensions mentioned above. In addition, an augmented version
UMLOCL2withTransformations.use exists which contains further meta-classes
which we describe below.

% specifies

Transformation
Designer

Many20ne II

Java filter translates
transformations
into imperative OCL

<<generated>> /
UMLOCL2WithTransformations UMLOCL2

(umlocl2.use)

(umlocl2withTransformations.use)

/\
| instance of
|
gives class diagram !
as personcompany.cmd PersonCompany Icreate t:Many20ne
(many jobs) (create transformation

objects)
PersonComany
with transformation

Modeler objects added

lexecute t.apply()
PersonCompany (apply transformation)
(one job)

Fig. 1. The overall picture

The modeler creates his or her model in USE as a sequence of state
manipulation command (a .cmd-file). After reading and executing this se-
quence, USE holds the PersonCompany class diagram as an instance of UM-
LOCL2withTransformations. Of course, manually specifying a UML class dia-
gram as a meta-model instance is not a pleasing task. Therefore we created an
import filter, that converts USE specifications (.use-files) into instances of the
UML meta-model (.cmd-files that are executable w.r.t. UMLOCL2.use). But
this is only for convenience and is not required for our approach. Notice that
PersonCompany could also be instantiated as an instance of UMLOCL2, as only

meta-classes from this meta-model are used up to this point. But since we want
to enable transformations on PersonCompany, we are using the latter one.

The modeler can now choose one of the transformations that have been pre-
viously defined by the transformation designer (explained soon). From the mod-
elers point of view this means to add an instance of a corresponding trans-
formation meta-class (Many2One in Fig. 1) to the meta-level representation of
his or her class diagram. This transformation meta-classes contain operations
with side-effects that realize the intended effect. By convention, each transfor-
mation meta-class defines an entry point operation apply(). By invoking ap-
ply() the transformation object changes its surrounding instances of the UML
meta-model. This may require several internal steps. Finally, the transformation
object is removed again, leaving a meta-level representation of the modified Per-
sonCompany class diagram (for example, with only one job per person now).
Alternatively, transformation objects can also be kept for tracing reasons.

How do the transformation meta-classes come into play? First, the transfor-
mations are developed by the aforementioned transformation designer. In our
case study we employ a formalism which consists of simple transformation steps
(described as object diagrams with some minor extensions) and regular expres-
sions controlling the correct execution sequence of the individual steps. Each
transformation consists of one control expression and one or many transforma-
tion steps. Transformations described in this formalism can be visualized in a
UML-like representation (extended object diagrams). For our purpose, we have
developed a textual syntax, too.

These transformation descriptions, having a high level of abstraction, are
then translated into transformation meta-classes using the minimal imperative
language we added to USE. As a result we achieve an enriched version of the
original UML meta-model. For each transformation class, several internal op-
erations are created to implement the pattern matching and the application of
the transformation steps, and the overall control expression. Furthermore, new
associations can be added to the meta-model to allow to specify the context for
the transformation (e.g., to specify the target association end in the example in
Sect. 3). Finally, the existing meta-classes can be enriched by further operations
to implement cross-cutting functionality such as cloning or component exchange
(described later on).

Currently, this translation (or compilation) from our high level transforma-
tion formalism into the imperative language is realized as a Unix filter like Java
program. This program takes the original UML meta-model (UMLOCL2.use)
and the textual transformation description (ManyToOneTrans.txt) as input files
and yields a modified version of the original .use-file. More than one transfor-
mation can be added by applying this step repeatedly.

2.2 The imperative extensions to USE specifications

We shortly introduce the new USE specification language concepts. In previous
versions of USE, operations could be specified in two ways: a) as OCL queries or
b) by providing pre- and postconditions that characterize operation properties.

The first variant is side-effect free. Operations specified by pre- and postcon-
ditions are typically not side-effect free, but not automatically executable from
USE’s point of view neither. They can validated given a manually provided se-
quence of state manipulation command.

Now we have added a third mechanism to specify operations (with side-
effects) in USE. It is a small imperative language that allows us to provide
operational specification. It is build around OCL as an expression language. It
further adds the following imperative elements:

— Basic state manipulation statements: create and destroy objects, insert and
remove links between objects, set attribute values. (These operations were
available in USE before in the (still existing) command files.)

— Flow control statements: execute conditionally (if-then-else), execute repeat-
edly (while), and iterate over collections.

— Invocation of other operations. Other operations can be invoked if they are
also defined using this imperative language. Recursive invocation is sup-
ported. (Of course, OCL query operations can be used as well, but only in
expressions.)

This language resembles the operational mappings language provided by

OMG QVT.

2.3 The transformation language used for the catalog

Due to the expressive power of the added imperative language, we can now realize
arbitrary transformations on instances. This can be done, as illustrated in the
beginning, by putting one or many transformation operations into an explicit
transformation class. But writing transformations on this level is still a tedious
task for complex transformations. Several higher level alternatives exist that are
more appropriate to this task, such as graph transformation or relation-based
approaches like in QVT.

Therefore, we created a small, more abstract transformation language to for-
mulate our UML class diagram transformation catalog. Instead of implementing
this transformation language in USE, too, we defined a mapping onto the small
operational language introduced above. This mapping is currently realized by a
small, external piece of software which acts like a Unix filter. It reads an existing
source specification and one or many transformation descriptions and creates a
specification which is enriched by new transformation classes that implement
the transformations.

In our transformation language, a transformation consists of two parts: a
set of transformation steps and a control expression. The transformation steps
build the atoms of a transformation. They are specified as extended UML object
diagrams. The control expression then specifies when and in which order the
individual steps have to be applied. The control expression language is a regular
language whose terminal symbols are the transformation steps.

(Transformation steps) Figure 2 shows a simple transformation step, an ex-
tended object diagram. A UML diagram diagram can be regarded as a restricted

<<destroy>>

E :Assoc2 D

<<create>>
:Assocl

<<create>>

cObj: F

Fig. 2. A simple transformation step

form of a graph transformation rule: Unless marked otherwise, the objects and
links in the diagram determine the context of a gratra rule. Elements marked
with the stereotype «createy are created by the rule. Elements marked with «de-
stroy» are destroyed by the rule. The destroyed and context elements determine
the redex of the rule, i.e. the pattern which must be found in the system state in
order to apply the rule. In Fig 2, the redex of the transformation step consists
of the objects aObj, bObj, and the Assoc2-link that connects them. In order to
apply the step, actual assignments for aObj, bObj and the Assoc2-link have to
be found in the system state. Given a certain valid redex, applying the rule will
create a new object of class F, connected to bObj, and destroy the Assoc2-link.
We further allow OCL preconditions to be part of the extended object diagrams.
This way one can further restrict what is a valid redex (not shown in Fig 2).

(Translation of transformation steps) For each step two operations are cre-
ated in the corresponding transformation class (Many2Oune in the example which
is described in detail in Sect. 3). First a stepname_ redez() operation is defined
which returns a redex for the step. The result type is a tuple consisting of all ob-
jects that determine the context of the step. In the above example, the signature
is ezampleStep redex() : Tuple(aObj:D, bObj:E).? Second, a stepname_apply()
operation is applied which takes a redex tuple and realizes the actual effect of
this step. For the example step, this is: ezampleStep apply(redex: Tuple(aObj:D,
bObj:E)).

(Control expression) A transformation can consists of several steps. The
transformation control expression is a regular expression that controls how the
steps are combined. An example may look like this:

MyTransform := Init StepA* (StepB | StepC)* CleanUp

The syntactical elements are as usual. Star means as long as possible (include
zero times), parenthesis group steps, the bar specifies alternatives. Note that we
do not allow a recursive definition (i.e., the derivation tree has to be acyclic).
However, it is still possible to create infinite loops, due to '*’ expressions. It is
the transformation developer’s responsibility to ensure that the transformation
process terminates.

3 The links are not a part of the redex tuple, because we assume relation semantics
for associations. Multiple links of the same association are not allowed between a
pair of objects.

To implement our transformation class for a transformation, we create three
elements in the class:

1. A step() operation that applies one step (if possible). This operation uses
the various ... redex() operations to determine the next applicable step().

2. A state attribute which keeps track of the current transformation state (a
state of the finite automata created from the regular control expression).

3. An apply() operation which simply applies step() as long as possible. This
is the entry point to apply the transformation.

3 Case Study

In this section, we show how we implemented the aforementioned transformation
catalog with the extended version of USE. Our transformation catalog resem-
bles the refactorings catalog of Martin Fowler [Fow99|. It contains class diagram
transformations such as moving methods from one class to another, changing
generalizations into compositions, modifying associations, inlining, and extract-
ing classes.

The major feature of our catalog is that it considers OCL annotations on the
UML class diagrams. Because OCL expressions depend on the underlying class
diagram, they have to be incorporated when changing its structure. Of course
on this account, the transformations become more complex.

Due to this complexity our catalog provides a good example to validate an ap-
proach to model transformation (we think). This section provides an exemplary
insight into the catalog and its realization in USE. We pick one transformation
(Many20ne) which changes an association multiplicity from many to one. In the
following, we first explain Many2One in more detail, independent of its realiza-
tion in USE. Then we describe Many20One by means of the previously explained
meta-model transformation steps and its control condition. Finally, we illustrate
how one of these steps is translated into a USE specification, i.e., into imperative
operations.

3.1 Example Transformation: Many2One

Transforming an association multiplicity from many to one is conceptionally
simple but still interesting: a simple modification to the class diagram part has
some more demanding consequences on those existing OCL formulas that depend
on the modified association.

In OCL, every expression is typed. The type determines which operations can
be applied to its values. When navigating through an association end in an OCL
expression, the type of this expression is determined by the end’s multiplicity.
If the multiplicity is 1 or 0..1, the navigation expression has an object type.
Otherwise, the expression results in a collection.

Consequently, when changing the multiplicity of an association end from
many to one, the navigation expression along this end changes from collection-
valued to object-valued. Every OCL expression containing this navigation as

a sub-expression is affected. Accordingly, the Many20ne transformation also
consider the OCL expression parts when changing a class diagram. The Person-
Company class diagram in Fig. 3 illustrates the necessary modifications.

self.employer—>
exists(x | x.location
= self.location)

WorksFor

Person 0.* 0..* Company

location : String | employee employer | location : String

§

WorksFor

Person 0.* 1 Company

location : String | employee employer | location : String

’Aself.enployer.location = self.location

Fig. 3. Transforming an association multiplicity from many to one

Both UML class diagram fractions describe an employer-employee relation-
ship where a person resides in a location and works for a company. The upper
invariant states that a person has to work for at least one company which is
located in the same place. The depicted model transformation changes the mul-
tiplicity at the employer end from arbitrary to one, i.e. that after the transfor-
mation every person work in exactly one company. Accordingly, the type of the
navigation expression self.employer changes from collection-valued to object-
valued. Therefore, the invariant should be simplified to the expression stated in
the lower part of Fig. 3.

Most implied OCL model transformations are dependent on the performed
class diagram transformation. If one for example carries out a class diagram
transformation which changes an attribute name, all OCL expressions which use
this attribute name have to be adapted. However, if an association multiplicity is
changed, more complex OCL expression transformations have to be performed,
as explained above.

There is a great benefit if one keeps the number of dependent OCL model
transformations to a minimum, because these transformations cannot be reused
in other contexts. In case of Many2One, a separation between the dependent and
the independent transformations can be realized by following the steps below:

1. Transform all OCL collection operations to iterate, if possible.

2. Change the association multiplicity (UML model transformation).
3. Adjust all effected OCL expressions.

4. Simplify the OCL expressions.

Only the second step realizes a transformation of the UML class diagram. The
other three transformations refer to OCL expression transformations.

The first step maps all OCL collection operations to iterate, which is the
most powerful collection operation. For almost every collection operation such
a mapping can be defined (one exception e.g. is the including operation). The
advantage of this mapping is that after the transformation nearly all collection
operation expressions are iterate expressions. The number of used collection
operations is definitely reduced to a minimum and only for this reduced operation
set a corresponding transformation to the UML model transformation has to
be found. The most important issue about the first step is that it describes
equivalence transformations, i.e. these transformations can be applied in any
case and does not change the semantic of the expressions. The same holds for the
last step which simplifies the OCL expressions either by performing an inverse
transformation to the first one if possible or by applying some basic simplification
rules.

Only the third step depends on the UML model transformation and can only
be applied if this concrete UML model transformation is performed. The UML
class diagram transformation causes that the affected OCL expressions which
normally result in a collection become object-valued (they result in exactly one
element). Thus within this step, the collection operations have to be transformed
to equivalent expressions which only uses object operations.

3.2 Realization of Many20ne with USE

All transformations of the case study consist of control expressions and trans-
formation steps. In this section the control expression and the steps of the
Many20ne transformation are explained.

As mentioned above, the control expression serves as the control structure
which coordinates the execution order of the transformation steps. These control
expressions are described using regular expressions. The following one describes
the process of the Many20One transformation.

Many20ne = Iteratorize* changeMultiplicity AdjustCollectionOps*
Simplifyx*

Iteratorize = existsToIlterate | forAllToIterate |
AdjustCollectionOps = AdjustIterate | AdjustIncluding |

AdjustIterate = inlineRangeForRangeVar inlineAccuInitForAccuVar
inlineIterateBodyForIterate

Simplify = iterateToExists | iterateToForAll |

These control expressions of Many2One are related to the above mentioned
transformation steps. Iteratorize refers to the transformation of the collection
operations to iterate. The association multiplicity of the UML class diagram

is changed by the step changeMultiplicity. AdjustCollectionOps corresponds to
the adaptation of the OCL expressions which were affected by the class diagram
change. AdjustIterate for example transforms an iterate expression to an equiv-
alent object-valued expression, if the source expression of iterate refers to exactly
one element. This means that during the evaluation of the iterate expression
always only one iteration is performed. Consequently, the control variables and
the result variable can be replaced by their initialization values. These substi-
tution steps are realized by all three inline transformation steps. The last step
(simplify) is related to the simplification of the OCL expressions. This trans-
formation step realizes the inverse effect of Iteratorize and also applies some
generic simplification rules.

In the following, some transformation steps of Many20One are exemplarily
described to show the functioning of the transformation steps. Figure 4 shows
an excerpt of the UML and OCL meta-model which is relevant for the transfor-
mation steps of Many2One and consequently fundamental for the understanding
of those steps.

NamedElement

N

[T
‘ Constraint ‘ ‘ TypedElement ‘
N

specification

ValueSpecification

N

ExpressioninOcl

Classifier ‘

‘ Property }_DwnedEnd
owjnedAttri

ute

Association

0
source, Z%

I Sl
‘ VariabIeExp‘ ‘ CallExp
/\

\ ;referredVariab\e

Variable| fterator

referregiPropert)

arg
ﬁ\body
|

‘ NavigationCallExp

result,

VAN
PropertyCallExp
IteratorExp

IterateExp

Fig. 4. Relevant excerpt of the combined UML and OCL meta-model

At first, we started to define the Many2One transformation using visual trans-
formation rules. However, these rules quickly become very complex and hard to
maintain. On this account, we defined some extensions to significantly reduce
the complexity of the specifications, i.e. to reduce the number of transforma-
tion steps. In the following these extensions will be explained considering some
Many20ne transformation steps as example.

Step existsToIlterate: If we take the example of Fig. 3 as a basis, the first
transformation step which could be applied would be existsToIterate. In this
example the expected result of this step would be the following expression:

self.employer->iterate(x; result:Boolean = false |
result or x.location = self.location)

The transformation schema of the existsTolterate is depicted in the extended
object diagram of Fig. 5.

- N
// . <<delslroy>> A NAd <<replaceComponent(existsExp)>> N \replacing
/ /v\ <<create>> ~_ iterate
! name = ‘exists’ PR iterateExp:IterateExp ~. .
\ il . |, <<create>>
\ soufee | “QclEXpression[—]
1

\ <<destroyp>

<create>>

<<create>>

<<create>>

n

!
' ilera‘or \%‘ iterator

<< >4
\ . source or ale/ part of
\ <destroy>> / <<create>> <<create>> 7/ OCL std lib
\\ \ argument, result accuRef : VariableExp| ~ L-====_
:OclExpression, 7 =7 L--" ion
N R bodyy = , <<create>> referredvariable -1 _F referredOperation \
~ 4 accu - Variable - - i
N ~ < PR <<cre§te—>>’ - :Operation 1
- ~— . !
~ = - = 4 1]
replaced_ t S varName@post = 'r / s . name = ‘or ,
exists \ ! 4 ’
N <create>> / , 7 feature /
\ initExpression <<creplg>> ’ type| type , 4
\ I
<<create>> / . L ’
T woe| -DataType
\\ :Booleanl iteralExp / ! wpe ’
1
\ , ! name = 'Boolean! .
\ | name@post = ‘false] , \ N e
N

N _ N _ -
~ _ - -~ - -

Fig. 5. Transformation step of existsToIterate

As mentioned in Section 2, all objects which are not created during this
transformation step and their specified attribute values form the redex of this
step. Within existsToIterate this redex consists of an exists expression (labeled
with replaced exists) and the or operation and boolean type from the OCL
standard library (marked as part from OCL std 1ib).

As explained before, the existsToIterate replaces the exists expression with
an equivalent iterate expression. Consequently, the replaced exists part drops
out during this step and is replaced by an iterate expression (labeled with
replacing iterate) which holds the same source expression and control vari-
ables. By definition the iterate expression also owns an accumulator variable
which is initialized with false. The body expression of exists now becomes the
body expression of iterate, but is extended by the expression result or.

The replacement of expressions is one of our extensions which was introduced
to reduce the number of transformation steps to a minimum. The replacement
is realized by the stereotype «replaceComponent» and indicates that the owner
of the labeled component should replace its part, specified by the parameter
expression, with the caller component (e.g. in this case exists should be replaced
with iterate). The effect is that every step only has to be defined once and not

for each possible owner (e.g. if, let, invariant and operation expressions) of the
replaced expression. For this purpose we have introduced an ownership and a
part relationship within the UML and OCL meta-model which are derived from
existing associations.

The @post term indicates another extension within the transformation steps
which describes the setting or changing of attribute values during the transfor-
mation step. An example of this construct can be found in Fig. 5 where the
initialization value of the accumulator is set to false during the transformation.

Step inlineRangeForRangeVar: The existsToIterate step already needed
some of the extensions to be realized. It has also demonstrated how transfor-
mation steps are specified within USE in general. The following transforma-
tion step (inlineRangeForRangeVar) will employ the last remaining extension.
As mentioned above inlineRangeForRangeVar is one of three steps which real-
izes the transformation from iterate to an object-valued expression. It substi-
tutes the source expression of iterate for all occurrences of the control vari-
ables within the body expression. Fig. 6 shows the transformation scheme of
inlineRangeForRangeVar.

self : Many?One <<destroy>>
xref : VariableExp
<q<destroy>>
endToChange source referredVariable
assocEnd : Property navCallExp : NavigationCallExp
lower = 1
upper =1

<<replaceComponent(xref)>>
<<copy(navCallExp)>>

copyOfNavCallExp : NavigationCallExp

Fig. 6. Transformation step of inlineRangeForRangeVar

As before, the replacement of the control variable is realized using the «re-
placeComponent» stereotype. However, the new extension within this transfor-
mation step is the copying of an OCL expression. Within the UML and OCL
meta-model several compositions, i.e. part-of relationships, are defined. These
compositions state that an object should belong to at most one owner object. In
our example transformation, the control variable can occur several times within
the body expression of iterate. Because it should be substituted with the origi-
nal source expression and because there can occur some part-of relationships to
its owner, the source expression has to be copied.

This copying is visualized by the stereotype «copy» and is a mixture of shal-
low and deep copy. If the expression which should be copied has some composi-
tion relationships to its parts, these parts should be copied deeply. Otherwise, a

shallow copy (i-e. no copying of the related objects, but insertion of links between
the new copy and these objects) is sufficient. The shallow copy also reduces the
complexity of this approach.

As shown in this section, the defined extensions highly reduce the number
of the transformation steps, especially the «replaceComponenty stereotype. We
have also detected that some kind of copying is essential for the definition of
more complex transformations.

3.3 Excerpt of the resulting USE specification

Finally, the following subsection shows an excerpt of the extended USE specifi-
cation that is created from the last section’s transformation specification by our
translation filter. As explained in Sect. 2.3, one _redex() and one _apply() op-
erations are created in the added transformation class (Many2One). We pick the
two operations that are created for the step inlineRangeForRangeVar because
they are short enough and yet implement several of the features that can occur
in a step. Following the order of execution, we first show the _redex() operation,
which tries to find a valid tuple of objects for inlineRangeForRangeVar (slightly
reformatted to improve readability).

1 Many20ne::inlineRangeForRangeVar_redex()
Tuple(assocEnd:Property, navCallExp:NavigationCallExp,
iterate:IterateExp, x:Variable, xref:VariableExp)

2 Dbegin

3 declare foundRedex : Boolean

4 set foundRedex := false

5 for iterate : IterateExp in IterateExp.alllnstances do
6 for xref : VariableExp in VariableExp.alllnstances do
7 if (not foundRedex) and

8 xref.referredVariable = iterate.iterator and

9 Set{self, self.endToChange, iterate.source,

iterate, iterate.iterator, xref}->size = 6 and

10 assocEnd.lower = ’1’ and assocEnd.upper = ’1’

11 then

12 set result := Tuple{assocEnd = self.assocEnd,

13 navCallExp = iterate.source

.oclAsType (NavigationCallExp),

14 iterate = iterate,

15 x = iterate.iterator,

16 xref = xref}

17 set foundRedex := true

18 endif

19 next
20 next
21 end

This operation is basically a nested iteration over the potential matches for
the step’s context objects (lines 5 and 6). As an runtime optimization, the filter
program tries to omit iterations for objects that implicitly reachable from other

redex objects via to-1 navigations. For example, navCallEzp is reachable as
iterate.source. The heart of the loops checks for each combination of candidates
if the non-implicit required links exist between them (line 8). If further all objects
are pairwise different and not undefined (line 9) and all other preconditions hold
(line 10), the found redex is returned from the operation.

Having a valid redex, we can invoke the _apply operation, which looks as
follows for our step:

1 Many20ne: :inlineRangeForRangeVar_apply(redex :
Tuple(assocEnd:Property, navCallExp:NavigationCallExp,
iterate:IterateExp, x:Variable, xref:VariableExp))

2 begin

3 declare copyOfNavCallExp : NavigationCallExp

4 set copyO0fNavCallExp := redex.navCallExp.copy()
.oclAsType (NavigationCallExp)

5 redex.xref.owner () .oclAsType (ModelElement)

.replace(redex.xref, copyOfNavCallExp)
6 delete (redex.xref, redex.x) from VariableExp referredVariable
7 destroy redex.xref
8 end

This operation actually applies the step. Beside the basic step semantics (cre-
ating/destroying links/objects, setting attribute values, cf. [BG06]), this step
operation also realizes the «copy» and «replaceComponenty extensions (lines 4
and 5). Both extensions require additional operations to be generated into the
UML/OCL meta-classes (copy() and owner()). Both additional operations can
be generated automatically by exploiting the compositions (the black diamonds)
in the meta-model.

There is a lot more to say about the translation of our transformation lan-
guage into .use files which does not fit into this paper (for example, the trans-
lation of the control condition). However, we hope that we have illustrated the
general idea of using an imperative OCL as an assembler for our transformation
language.

4 Conclusion

In the previous sections we showed how we are realizing UML model transforma-
tions with USE. We extended the USE tool itself and added a new imperative
language component. We then translated the higher level transformation lan-
guage that we used to implement our catalog onto this imperative language.
We feel that several transformation languages or formalisms can be translated
this way. Actually, we had to extend our initial transformation language by new
elements («copy» and «replaceComponenty) which underpins the flexibility of
our approach.

Several alternatives exist for the imperative language extensions that we
made. We believe that UML Actions (as part of the specification) could be used
instead — actually, UML Actions provide a lot more features than we require

for our approach. The Kermeta meta-modelling environment could also be used
for this purpose, as it supports OCL evaluation. Kermeta also provides several
programming language-like extensions such as exception handling.

We do not aim to provide a “better QVT”. Instead, our approach aims to-
wards a support for evaluation and development of both, transformations, and
transformation languages. Because USE (technically) and OCL (conceptually)
can be reused, new transformations concepts can be developed hands-on.

References

[BGO6]

[Biit05]

[CHO3]

Fabian Biittner and Martin Gogolla. Realizing Graph Transformations by
Pre- and Postconditions and Command Sequences. In Andrea Corradini,
Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Gregorz Rozenberg, edi-
tors, Proc. 3rd Int. Conf. Graph Transformations (ICGT’2006), pages 398—
412. LNCS 4178, Springer, Berlin, 2006.

Fabian Biittner. Transformation-Based Structure Model Evolution. In
Jean-Michel Bruel, editor, Satellite Events at the MoDELS’2005 Conference,
pages 339-340. Springer, Berlin, LNCS 3844, 2005.

K. Czarnecki and S. Helsen. Classification of model transformation ap-
proaches. In Report of 2nd OOPSLA Workshop on Generative Techniques
in the contert of Model Driven Architecture. 2003.

[FDVF06]| Franck Fleurey, Zoé Drey, Didier Vojtiseka, and Cyril Faucher. Kermeta

[Fow99)

[FUJ]
[GRO2

[JKO5]

language reference manual, 2006. http://www.kermeta.org/docs/KerMeta-
Manual.pdf.

Martin Fowler. Refactoring: Improving the Design of Ezxisting Code.
Addison-Wesley, August 1999.

The Fujaba tool suite, http://wwwcs.uni-paderborn.de/cs/fujaba//.

Martin Gogolla and Mark Richters. Development of UML Descriptions with
USE. In Hassan Shafazand and A Min Tjoa, editors, Proc. 1st Eurasian
Conf. Information and Communication Technology (EURASIA’2002), pages
228-238. Springer, Berlin, LNCS 2510, 2002.

Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-
Michel Bruel, editor, MoDELS Satellite Events, volume 3844 of Lecture Notes
in Computer Science, pages 128-138. Springer, 2005.

[MDFHO04| Pierre-Alain Muller, Cédric Dumoulin, Frédéric Fondement, and Michel

[MFJ05]

[Mod]
[OMGO06]
[Roz97]

Hassenforder. The topmodL initiative. In 3rd Workshop in Software Model
Engineering (WISME UML 2004), 11 October 2004, Lisbon, Portugal, Pro-
ceedings of the UML Satellite Activities 2004, Lecture Notes in Computer
Science, Volume 8297, Feb 2005, pages 242245, 2004.

Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving exe-
cutability into object-oriented meta-languages. In S. Kent L. Briand, editor,
Proceedings of MODELS/UML’2005, volume 3713 of LNCS, pages 264-278,
Montego Bay, Jamaica, October 2005. Springer.

ModelWare, http://www.modelware-ist.org/.

OMG. MOF QVT final adopted specification, 2006.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

