
Restrictions for OCL constraint
optimization algorithms

Gergely Mezei, Tihamér Levendovszky, Hassan Charaf

Budapest University of Technology and Economics
Goldmann György tér 3., 1111 Budapest, Hungary

Abstract. Efficient constraint handling is essential in UML, in meta-
modeling, and also in model transformation. OCL is a popular, textual
formal language that is used in most of the modeling frameworks to
express constraints. Our research focuses on the optimization of OCL
handling. Previous works have presented algorithms that can accelerate
the constraint validation by rewriting and decomposing the constraints
and caching the model queries. Although these algorithms can be used in
general, there are special cases, where additional restrictions apply. The
aim of this paper is to present these refined restrictions and the extended
optimization algorithms.

1 Introduction

Metamodeling techniques can describe the rules of Domain Specific Modeling
Languages (DSMLs), but these descriptions mainly consist of topological rules
only. The available model items, their attributes and the possible relations be-
tween the items can be defined, but these definitions have a tendency to be
incomplete, or imprecise. For example, there is a resource editor domain for mo-
bile phones. Here, it is useful to define the valid range for slider controls that
cannot be accomplished using metamodeling techniques. Another example is a
metamodel that defines a DSML with computer networks. A single computer
can have input and output connections, but these connections use the same ca-
ble with maximum n channels. Thus, the number of maximum available output
connections equals the total number of channels minus the current number of
input channels. Such constraints cannot be expressed by metamodel rules.

The real need for constraints applies also to graph rewriting-based model
transformation [1]. Here the Left Hand-Side (LHS) of the rewriting rules define
the pattern to find in the host graph. Beyond the topology of the visual models,
additional constraints must be specified. Model transformations constraining
the pattern matching are very popular, they are used for example in QVT [2].
Additionally, dealing with constraints means a solution to several unsolved model
transformation issue [1].

One of the most wide-spread approaches to constraint handling is the Ob-
ject Constraint Language (OCL) [3]. OCL is a flexible formal language. It was
originally created to extend the capabilities of UML [4], but due to its flexibil-
ity, it can also be used in metamodeling environments with minor extensions [5].



Nowadays OCL is becoming essential both in metamodel-based model validation
and model transformations.

Visual Modeling and Transformation Systems (VMTS) [6] is an n-layer meta-
modeling and model transformation tool. VMTS uses OCL constraints in model
validation and also in the graph rewriting-based model transformation [1]. VMTS
contains an OCL 2.0 compliant constraint compiler that generates a binary ex-
ecutable for constraint validation [7]. The constraints contained both by the
rewriting rules and by metamodel diagrams are attached to the metamodel,
thus they can be handled with the same algorithms.

Previous papers [8] and [9] have presented three optimization algorithms.
These algorithms can reduce the navigation steps in the constraints (i) by re-
locating the constraints, (ii) separating clauses based on Boolean operands and
(iii) caching the result of the model queries applied during validation. The main
advantage of the algorithms is that they do not rely on system-specific features,
thus, they can easily be implemented in any modeling or model transformation
framework. The general correctness of the algorithms has also been proved.

While implementing and by further examining these algorithms, we have re-
fined their application conditions. We have found that the scope of usability of
the first algorithm is limited. Furthermore, the second algorithm can acceler-
ate the validation in certain cases only, according to the type of the Boolean
operand. The cases where the decomposition to clauses are meaningless, thus,
the advantage of the optimization that equals zero have to be excluded from the
algorithm. The primary aim of the paper is to present these restrictions and the
extended algorithms.

The paper is organized as follows: firstly, Section 2 elaborates the original
version of the two optimization algorithms. Secondly, Section 3 introduces the
limitations of the algorithms, while Section 4 presents the new, extended algo-
rithms. Finally, Section 5 summarizes the presented work.

2 Backgrounds and Related Work

In general, the evaluation of OCL constraints consists of two steps: (i) selecting
the object and its properties that we need to check against the constraint and (ii)
executing the validation method. Although the second step can use several OCL-
related optimization methods, our optimization algorithms focus on the first
step, bacause: (i) The efficiency of the validation depends on the realization of
the OCL library (types and expressions), thus, optimizing the validation process
is usually more implementation-specific; (ii) in general, the first step has more
serious computational complexity, since each navigation step means a query in
the underlying model. The original version of the algorithms were published in
[8] and in [9].

2.1 Relocation

One of the most efficient way to accelerate the constraint evaluation is to re-
duce the navigation steps in a constraint. This is the aim of the first algorithm,



called RelocateConstraint (Alg. 1). The algorithm processes the propagated OCL
constraints, and tries to find the optimal context for the constraint. The main
foreach loop examines the navigation paths of the actual constraint and relo-
cates the constraint to the node at the smallest navigation cost. Here, relocation
means changing the context of the constraint without changing the result of the
evaluation.

Algorithm 1 RelocateConstraint algorithm
1: RelocateConstraint(Model M)
2: for all InvariantConstraint C in M do
3: minNumberOfSteps = CalculateSteps(CurrentNode in C)
4: optimalNode = CurrentNode of the C
5: for all Node N in C do
6: numberOfSteps = CalculateSteps(N)
7: if numberOfSteps < minNumberOfSteps then
8: minNumberOfSteps = numberOfSteps
9: optimalNode = N

10: if optimalNode 6= CurrentNode of C then
11: UpdateNavigations of C
12: Relocate C to optimalNode

2.2 Decomposition

Constraints are often built from sub-terms and linked with operators (self.age =
18 and self.name = ′Jay′), or require property values from different nodes
(self.age = self.teacher.age). Thus, using the RelocateConstraint algorithm,
it is not always possible to eliminate all navigation steps. Although these sub-
terms are not decomposable in general, they can be partitioned to clauses if they
are linked with Boolean operators. A clause can contain two expressions (OCL
expression, or other clauses) and one operation (AND/OR/XOR/IMPLIES) be-
tween them. By separating the clauses, we can reduce the number of the naviga-
tion steps contained by the OCL expressions and the complexity of the constraint
evaluation during the constraint validation process. It is simpler to evaluate the
logical operations between the members of a clause than to traverse the naviga-
tion paths contained by the constraints.

The ANALYZECLAUSES algorithm (Algorithm 2) works on the syntax tree
of the constraint. The algorithm is invoked for the outermost OCL expression of
each invariant, recursively searches the constraint for possible clause expressions
and creates the clauses. The algorithm uses the following rules: (i) A clause is
created for every logical expression, the two sides of the expression are added
to the clause as children. The children are recursively checked to decompose
nested Boolean relations. (ii) Parentheses are eliminated, the inner expressions
are checked. (iii) In other cases, if there is only one expression in the whole



constraint, then a special clause is created, otherwise the RelocateConstraint
algorithm is used on the expression.

Algorithm 2 AnalyzeClauses algorithm
1: AnalyzeClauses(Model Exp)
2: if Exp is LogicalExpresssion then
3: Clause = CreateClause(Exp.RelationType)
4: Clause.AddExpression(AnalyzeClauses(Exp.Operand1))
5: Clause.AddExpression(AnalyzeClauses(Exp.Operand2))
6: return Clause
7: else
8: if Exp is ExpressionInParentheses then
9: return AnalyzeClauses(Exp.InnerExpression)

10: else
11: if Exp is OnlyExpressionInConstraint then
12: Clause = CreateClause(SpecialClause)
13: Clause.AddExpression(RelocateConstraint(Exp))
14: return Clause
15: else
16: return RelocateConstraint(Exp)

3 Contributions

In general, there are two key questions in connection with optimization algo-
rithms: (i) whether they result in the same output as the original algorithm for
every possible input and (ii) whether they are more efficient. The first question
is crucial, because having proper evaluation results is essential. These guidelines,
these two questions are taken into examination when constructing the limitations
for the optimization algorithms.

3.1 Correctness

Primarily, the correctness of the relocation algorithm is taken into examination.
An algorithm or a relocation is correct only if the output of the optimized and
original constraint is the same for every possible input. The aim of the limitations
is to eliminate the cases where the result of the original and the optimized
algorithms would differ. To achieve this, it is necessary to examine when and
how correct relocations can be applied. In the following propositions, we often
say — for the sake of simplicity — that a RelocationPath is correct, although we
mean that the relocation using the RelocationPath is correct.

Proposition 1. If the steps of RelocationPath are separately correct, then their
composition, the RelocationPath is also correct.



Example 1. The original constraint is located in node A, the optimal node is D
(Fig. 1). Thus, the RelocationPath is drawn from A to D (dashed line). If neither
the relocation from node A to C (solid line), nor the relocation from node C to
D (dotted line) change the result of the constraint, namely they are correct, then
the proposition states that the relocation from A to D is also correct.

Fig. 1. The steps and the whole RelocationPath

Proof. Let C be the original constraint and P a complex RelocationPath found
by the search steps. P contains finite number of steps, since the host model
contains finite number of model items and no circular navigation paths are al-
lowed. Furthermore, let O be the original context; S the first step of P and O’
the destination node of S in P. According to the premise of the proposition the
correctness of S is proven, thus, relocating the constraint from O to O’ can be
accomplished. After applying this relocation, a new constraint, C’ can be con-
structed. Applying the relocation algorithm on C’ results a new RelocationPath,
P’ containing one less step, than the original one. Since P has a finite number
of steps, the algorithm always terminates.

Corollary 1. The steps in a path can be examined separately. If in a certain case
the correctness of the algorithm is proven to be correct for each single navigation
step in the RelocationPath, then it is also proven for the whole RelocationPath.
Thus, in general, if the correctness of each possible single navigation step is
proven, then the correctness of the whole relocation is proven. Therefore, it is
enough to examine the correctness of single relocation steps.

In the next propositions, the following abbreviations are used: C denotes the
original constraint, C ′ the new constraint, M0 is metamodel, M is model, O is
the original context, N is the new context. O and N are metamodel elements,
and their instantiations are O1, O2. . .On, and N1, N2. . .Nn.

Example 2. Fig. 2 shows an example metamodel, its instantiation, and the con-
straint relocation. The metamodel represents a domain that can model comput-
ers and display devices (here monitors only). A single computer can use multiple
monitors. The model defines a simple constraint attached to the node Computer,
this constraint is relocated by the optimization to the node Monitor.

Using the abbreviations, we can say the following: M0 is the metamodel
shown in Fig. 2/a, M is its instantiation (Fig. 2/b). O is Computer, N is Mon-
itor in M0. O has two instantiations, Computer1 (O1) and Computer2 (O2).



Fig. 2. Example metamodel and model

Similarly, PrimaryMonitor is N1, SecondaryMonitor is N2, and finally, Monitor
is N3.

Proposition 2. Navigation edges that allow zero multiplicity (on either or both
sides) cannot be used in RelocationPath.

Proof. Let M be a model with O1, N1 and N2 defined (Fig. 3). Let N1 be
isolated (or at least not connected with O1).

Fig. 3. Null multiplicity - metamodel and model

Let C and thus C ′ contain an expression that is not valid in N1, but valid in
N2. The evaluation of C results true, since N1 is not checked, because it is not
connected with O1. However C ′ fails, thus, the relocation is not correct.

The multiplicity of relations in metamodels is defined by a lower, and an up-
per limit. The limits can contain an integer representing the number of partici-
pants exactly, or * allowing any number of objects. In the following propositions,
we categorize the multiplicities:



– ZeroOrMore - the lower limit of the multiplicity is 0 (the upper limit is not
important)

– ExactlyOne - the lower and the upper limit is also 1
– MoreThanOne - the lower limit is not 0, while the upper limit is more, than

1

Proposition 3. A relation with multiplicity ExactlyOne on both sides can be
used for relocation. In this case the relocated expression differs from the original
version in the navigation steps (or navigation step sequences). The new con-
straint expression is transformed from the original definition using the following
rules:

Rule 1. If the expression is a navigation to the new context (N), then the
expression is transformed into self.

Rule 2. If the expression is an attribute query in the old context (O), then the
new expression is a navigation from N to O and an attribute query applied there
(e.g. self.Manufacturer is transformed to self.computer.Manufacturer).

Rule 3. If the expression is a navigation from the old context (O), then the
new expression is a navigation from N to O.

Rule 4. Other expressions in the constraint are not altered.

Example 3. Let the example metamodel cited above define that computers are
able to handle exactly one monitor, and monitors are always connected to exactly
one computer (Fig. 4). Furthermore, let the constraint C state that the monitor is
an LCD monitor (display.Type = ′LCD′). In this case relocating the constraint
will result C ′: Type = ′LCD′.

Fig. 4. ExactlyOne multiplicity on both sides - metamodel and model

Proof. An ExactlyOne multiplicity on both sides means that O and N objects
can refer to each other the same way (using the role name of the destination
node). The result of the navigation reference is always a single model item, not



a set of model items and not an undefined value. This means that changing the
navigation steps can be accomplished.

The transformation rules are also correct if the rules above are satisfied:
Rule 1. The relocation has changed the context, thus, the navigation step

in the original context is not necessary any more.
Rule 2. and Rule 3. Since the original attribute reference, or the destination

node of the navigation is invalid in the new context, thus, the constraint has to
navigate back to the original context first, and applying the expression there.

Rule 4. Rule 1-3. covers all possible valid attribute and navigation expres-
sions, thus, no additional rules are required.

Proposition 4. If the multiplicity is ExactlyOne on the destination side, but
MoreThanOne on the source side (not allowing zero multiplicity), then the con-
straint expression can be always relocated. In this case the constraint is encap-
sulated by a new constructed forall expression. If the relocated constraint does
not contain any attribute reference to the original context node, or navigation
through it, then the forall expression can be avoided.

The original expression cannot be used after relocation, because of the mul-
tiplicity MoreThanOne, which retrieves a set of model items. The basic idea is
to create an iteration on the elements of the set; the iteration is not contained
in the original constraint.

Example 4. Let O contain a simple constraint referring to one of its attributes,
named IsAbstract. After the relocation, the constraint is located in N and the
reference self.IsAbstract is transformed to

self.O->forall(O | O.IsAbstract).

This forall expression is true only if the condition holds for every elements in
the set.

Example 5. The example model has been changed to meet the requirements of
the proposition (Fig. 5).

Let C be defined as self.Price < display.Price. If this constraint is re-
located, then it is transformed to

self.computer->forall(computer| computer.Price > self.Price)

expressing that each computer attached to the monitor has to accomplish the
condition. Note that the navigation from O to N in display.Price was reduced
to a single self reference similarly to the ExactlyOne-ExactlyOne case.

Proof. The presented method ensures that each model item on the original
source side is processed, and the constraint is checked for each model item.
Since the ZeroOrMore multiplicity is not allowed, the navigation is always pos-
sible. Inside the forall loop, the name of the destination node is the iterator
value. Thus, this solution simulates ExactlyOne multiplicity on both sides. The
relocated and the original version are equivalent.



Fig. 5. MoreThanOne → ExactlyOne multiplicity - metamodel and model

Proposition 5. If the multiplicity is ExactlyOne on the source side, but More-
ThanOne on the destination side (not allowing optional multiplicity), then the
constraint expression can be relocated if and only if the original expression uses
forall, or not exists expression to obtain the referenced model items of the
new context. This means that only those relations can be used where the original
navigation selects all of the model items, or none of them (no partial selection,
or another operation is allowed).

Example 6. The constraint self.N->count() or self.N->select(N.IsUnique)
cannot be relocated, but the constraint self.N->forall(N.IsUnique) can.

Example 7. The example model shows the requirements of the proposition (Fig.
6). Note that due to the preconditions of the proposition, the references to Mon-
itor are always set operations in Computer. This means that, for example, the
expression self.display.Price>300 cannot be used, because display is a set,
not a single value.

Fig. 6. ExactlyOne → MoreThanOne multiplicity - metamodel and model



Let M0 contain three constraints: C1, C2 and C3 using the following defini-
tions:

inv c1: self.Price > 650

inv c2: self.display->count() > 5

inv c3: self.display->forall(m:Monitor| m.Price<300)

The proposition requires constraints to use forall expressions to query the
attributes of the new context, or the navigation paths through the new context.
But this also means that any other expression can be applied (for example a
local attribute query, such as in c1 ). In this case the method of ExactlyOne-
ExactlyOne multiplication can be used, thus, C ′

1 becomes the following:

inv c1: self.computer.Price > 650.

Complex set operations cannot be relocated according to the proposition,
thus, C2 cannot be relocated either. This limitation does not apply to C3:

inv c3: self.Price<300.

Although the original and the relocated version of the constraint seems to differ,
they have the same meaning: all monitors must be cheaper than 300 USD.

Proof. Firstly, the limitation to set operations is proven. In case of the general
selection operations, such as exists, the selection criterion is true for some
of the items and false for the others. This can lead to two problems with the
constraint rewriting: (i) the constraint validation can generate false results where
the selection criteria in the original expression is true/false, and (ii) the partial
results arising in N cannot be processed (for example summarized) in O. Neither
of these problems can be solved, thus, an universal relocation in this case is not
possible.

Secondly, it needs to be proven that relocation is possible along forall, or
not exists expressions. Note that not exists can be expressed using forall
by negating the condition. The main difference between the previous (erroneous)
subcase and this one is that here — if the model is valid — the condition in the
select operation is true (or false) for each model item. Thus, the relocated con-
straint fails only, when the original constraint also fails. The relocation algorithm
transforms forall expressions to single references. The relocated constraint is
checked for each node of the new context, thus, the constraints are functionally
equivalent.

Proposition 6. If the multiplicity is MoreThanOne on both side (not allowing
zero multiplicity) (Fig. 7), then the constraint expression can be relocated if and
only if the original expression uses forall, or not exists expressions to
query the referenced model items of the new context node.

Proof. This case is a combination of the previous cases. A new forall expression
is constructed such that it contains the whole relocated constraint, then, inside
this newly constructed forall, the original forall and not exists expressions



Fig. 7. MoreThanOne multiplicities - metamodel and model

are transformed to single navigation steps. The outer forall ensures that each
O object is checked for each N , while the inner expression holds the transformed
original constraint.

Proposition 7. If the constraint contains more than one attribute reference
expressions and these expressions do not depend on each other, then partial
relocation is feasible. Partial relocation means that some of the expressions are
executed in the new context, while others are executed in the original context. The
original context is reached using navigation. Partial relocation does not apply to
edges with zero multiplicity.

Proof. Since the proposition is true only for relations not allowing zero multiplic-
ity, the navigation between the original and the new context is always possible.
Both ExactlyOne and MoreThanOne relations can be traversed according to
the constructs presented earlier (either by single navigation steps, or forall
expressions). Thus, when the constraint is evaluated, navigating back to the
original context is always possible. In this way, the relocated and the original
functionality is the same.

Corollary 2. The task of finding possible destinations of relocation can be re-
duced to a simple path-finding problem from the original context to the new one,
where relations allowing zero multiplicity cannot be the part of the path. Note
that this path, if exists, is the RelocationPath mentioned earlier.

One of the main difference between the RelocateConstraint and the Analyze-
Clauses algorithm is that the first one modifies the constraint only by relocating
it, but the algorithm does not need special support from the validation frame-
work. In contrast, the second algorithm does not really modify the text of the
constraint, but it requires support for clause-handling during validation. There-
fore, AnalyzeClauses relies more on the framework, but depends less from the
constraint text.



Proposition 8. The original version (Algorithm 2) of the constraint decompo-
sition algorithm (AnalyzeClauses) is always correct if the supporting functions
are correct.

Proof. The algorithm AnalyzeClauses consists of a condition and several method
calls in the condition branches. The conditions ensures that the correct execution
branch is selected in all cases. Thus, the only part of AnalyzeClauses that can
cause erroneous results is the clause-handling, which is an external function. If
this external function is implemented well, the decomposition is always correct.

3.2 Efficiency

RelocateConstraint can reduce the number of navigation steps in the constraint,
but since the optimization uses only the metamodel, not the models, it does not
know exactly how many model items are affected by a single navigation step. If
the model uses ExactlyOne multiplicities only, then the optimization is correct,
but the cost of navigation is not predictable if the model contains MoreThanOne
multiplicities. In this case the number of model items on the destination side can
vary, thus, for example, the algorithm cannot decide between two paths different
only in relation with MoreThanOne multiplicities. This problem can be handled
using heuristics, but a globally optimal method cannot be constructed.

The situation is completely different in case of AnalyzeClauses. Here the
performance gained from the optimization depends on how efficient the con-
struction of the clauses is. The basic idea behind the algorithm is that the re-
sult of the Boolean operations sometimes requires the evaluation of one of the
operands only. For example in an AND expression, such as self.Size>50 and
self.display.Size>80 it is enough to check the value of the first operand if
it evaluates to false. This is why the boolean operators are special, why the
AnalyzeClauses algorithm is based on them instead of other types of operations.

Since the operands cannot affect each other, they can be evaluated separately
according to [9]. In case of AND, OR and IMPLIES operations the value of one
operand can affect the results of the whole operation:

– If either operand is false, then the AND operation is always false.
– If either operand is true, then the OR operation is always true.
– If the first operand is false, then the IMPLIES operation is always true.
– If the presented condition for the given operand is not satisfied, then both

operands is evaluated.

Similar simplification is not available for XOR operations, because in this
case both operands need to be evaluated.

4 The new algorithms

The restrictions to the optimization algorithms were presented in the previous
section, now the last step is to construct new, extended algorithms according to
these limitations.



The new RelocateConstraint is shown in Algorithm 3. It consists of two major
parts: (i) searching for the optimal node (and RelocationPath) (Algorithm 4) and
(ii) relocating the constraint if necessary (Algorithm 5).

Algorithm 3 The new RelocateConstraint algorithm
1: RelocateConstraint(Constraint, OriginalContext)
2: OptimalPath = SearchOptimalNode(OriginalContext, NULL)
3: if OptimalPath.LastElement 6= OriginalContext then
4: UpdateAndRelocate(Constraint,OptimalPath)

The first part of the RelocateConstraint algorithm is based on the SearchOpti-
malNode function. This function checks the relocation requirements while search-
ing (StepIsValid), thus invalidRelocationPath candidates are dropped as soon as
possible. SearchOptimalNode uses a recursive breadth-first-search strategy to
find every possible candidates. The external function CalculateSteps calculates
the number of model queries in the case when the new context is located in N .

Algorithm 4 The SearchOptimalNode algorithm
1: SearchOptimalNode(Node N , PathP )
2: minSteps = CalculateSteps(N)
3: optimumCandidate = Append(P , N)
4: for all CN in ConnectedNodes(N) do
5: if StepIsValid(CN) then
6: LocalOptimum = SearchOptimalNode(CN , Append(P , N))
7: LocalSteps = CalculateSteps(LocalOptimum.LastElement)
8: if LocalSteps < minSteps then
9: minSteps = LocalSteps

10: optimumCandidate = LocalOptimum
11: return optimumCandidate

The result of SearchOptimalNode is the RelocationPath. The last element
of the path is the new context itself. If the new context and the old context
are not the same, then the constraint is relocated and updated by the function
UpdateAndRelocate. The relocation is based on path steps, thus, the algorithm
updates the context declaration step-by-step. The multiplicity checking and the
constraint updating mechanisms are implemented in external functions to im-
prove the readability of the algorithm.



Algorithm 5 The UpdateAndRelocate algorithm
1: UpdateAndRelocate(Constraint C, Node O, Path P )
2: for all Step in P do
3: if SourceMultiplicity(Step)= ExactlyOne and

DestMultiplicity(Step)= ExactlyOne then
4: ExactlyOneRewrite(C)
5: if SourceMultiplicity(Step) 6= MoreThanZero then
6: AddForeach C)
7: if DestMultiplicity(Step) 6= MoreThanZero then
8: RemoveForeach(C)
9: return optimumCandidate

In the case of AnalyzeClauses there is only one new limitation: XOR oper-
ations are excluded when creating the clauses. The algorithm is presented in
Algorithm 6.

Algorithm 6 AnalyzeClauses algorithm
1: AnalyzeClauses(Model Exp)
2: if (Exp is AndExpression) or (Exp is OrExpression) or

(Exp is ImpliesExpression) then
3: Clause = CreateClause(Exp.RelationType)
4: Clause.AddExpression(AnalyzeClauses(Exp.Operand1))
5: Clause.AddExpression(AnalyzeClauses(Exp.Operand2))
6: return Clause
7: else
8: if Exp is ExpressionInParentheses then
9: return AnalyzeClauses(Exp.InnerExpression)

10: else
11: if Exp is OnlyExpressionInConstraint then
12: Clause = CreateClause(SpecialClause)
13: Clause.AddExpression(RelocateConstraint(Exp))
14: return Clause
15: else
16: return RelocateConstraint(Exp)

5 Conclusions

Due to the importance of constraints in modeling and model transformation,
efficient validation methods are required. Previous work has presented three
algorithms, which can accelerate the validation. This paper has examined the
algorithms, especially the relocation algorithm RelocateConstraint. Based on the
results, several necessary limitations and modifications have been introduced to
the original algorithms. The statements have been illustrated by small examples



and their correctness has also been proved. More complex examples — focusing
on the acceleration gained from the optimization — can be downloaded from [6].
According to the novel results, the algorithms have been updated.

As this paper has shown, proving the correctness of the algorithms precisely
is hard to manage. A mathematical formalism could help, but the current for-
malism of OCL is based on set theory, which is hard to use in examination of
dynamic behavior. Abstract State Machines offer a technique that has success-
fully been used in many similar domains as formalism. Such a formalism could
prove the correctness of the algorithms applying formal semantics. Therefore,
we are currently working on the formalism of the algorithms either using and
extending the old formalism, or creating a new, ASM-based formalism.

Although the steps of the three optimization algorithms have been made more
rigorous, processing the OCL constraints is not optimal. The decomposition and
the normalization of atomic expressions have reduced the navigation steps to
the minimum, and the caching algorithm has reduced the number of queries, but
further research is required to extend the scope of the optimization algorithms
and accelerate the process. The validation process can be optimized by rewriting
the constraints and avoiding time consuming expressions, such as AllInstances.

6 Aknowledgements

The paper is established by the support of the National Office for Research and
Technology (Hungary).

References

1. Lengyel L., Levendovszky, T., Charaf H. : Compiling and Validating OCL Con-
straints in Metamodeling Environments and Visual Model Compilers, IASTED 2004

2. MOF QVT Specification, http://www.omg.org/docs/ptc/05-11-01.pdf
3. Warmer, J. , Kleppe, A.: Object Constraint Language, The: Getting Your Models

Ready for MDA, Second Edition, Addison Wesley, 2003
4. UML 2.0 Specification homepage, http://www.omg.org/uml/
5. Mezei, G. , Lengyel, L. , Levendovszky, T., Charaf, H. : Extending an OCL Com-

piler for Metamodeling and Model Transformation Systems: Unifying the Twofold
Functionality, INES, 2006

6. VMTS Web Site, http://vmts.aut.bme.hu
7. Mezei, G. , Levendovszky, T., Charaf, H. : Implementing an OCL 2.0 Compiler for

Metamodeling Environments, 4th Slovakian-Hungarian Joint Symposium on Ap-
plied Machine Intelligence

8. Mezei, G. , Lengyel, L. , Levendovszky, T., Charaf, H. : Minimizing the Travers-
ing Steps in the Code Generated by OCL 2.0 Compilers, WSEAS Transactions
on Information Science and Applications, Issue 4, Volume 3, February 2006, ISSN
1109-0832, pp. 818-824.

9. Mezei, G. , Levendovszky, T., Charaf, H. : An Optimizing OCL Compiler for Meta-
modeling and Model Transformation Environments, Working Conference of Software
Engineering, 2006 (accepted)


