
SALESPOINT

a look behind the Framework

by Andreas Bartho, Simon Fein and Benjamin Wetzel

February 6, 2004

Contents

1 Data Management 3

1.1 DataBaskets . 3

1.1.1 Design of DataBaskets . 3

1.1.2 Design of DataBasketEntries . 3

1.1.3 Design of DataBasketConditions . 4

1.1.4 SubDataBaskets . 5

1.1.5 Commit of DataBasketEntries . 7

1.1.6 Rollback of DataBasketEntries . 8

1.1.7 Meaning of the Flag fHandled . 8

1.2 Catalogs . 8

1.2.1 Design of Catalogs . 8

1.2.2 Editability of Catalogs . 9

1.2.3 Addition of CatalogItems . 9

1.2.4 Removal of CatalogItems . 10

1.2.5 Retrieval of CatalogItems . 11

1.2.6 Name Change of CatalogItems . 12

2 Process Management 15

2.1 Introduction to Processes . 15

2.2 Start and Operation of Processes . 15

2.2.1 Preparation of Process Start . 15

 I

CONTENTS CONTENTS

2.2.2 Process Start . 16

2.2.3 Process Loop . 16

2.2.4 Process Finish . 17

2.3 Function of UIGates . 17

2.4 Function of Transitions . 18

3 Display Management 19

3.1 Introduction to Displays . 19

3.1.1 Connection of SalesPoints and Displays 19

3.1.2 Correlation of FormSheetContainers and Displays 20

3.2 Title of Displays . 20

3.3 Setting of FormSheets . 20

3.4 Removal of FormSheets . 21

3.5 Display Size . 21

3.6 Usable Displays . 22

 Summary 23

 II

Students of computer science at the Technical University Dresden and the UniBW Munich have
to fulfill a Software-internship during their studies. Most of those students use the so called
SalesPoint Framework for their internship. This framework, which is written in JAVA, offers
basic services and methods to develop small business applications or simulations thereof.

Although there is an extensive documentation for this framework, many students have the desire
to understand how the framework or single modules thereof work and are implemented, be it out
of interest or to make special changes for their own applications which have originally not been
meant to be supported by the Framework. This documentation is especially for those students.

Good JAVA-knowledge and experience in programming with SalesPoint are presumed. Basic
concepts of SalesPoint are not explained. They can be found in the technical description.

This technical report is also written for people who are developing and enhancing the frame-
work. Before beginning to implement new functions or to correct mistakes in the framework it is
necessary to exactly understand what happens within the framework and what side effects certain
methods can have.

The explanations of the framework functions are geared to the source code, which is freely avail-
able in the Javadoc. Under certain circumstances it can be helpful to refer to these sources for a
better understanding.

This report covers only parts of the framework’s functions, namely the Data Management with
DataBaskets and Catalogs, the Process Management and the Display Management.

2

Chapter 1

Data Management

1.1 DataBaskets

1.1.1 Design of DataBaskets

DataBaskets are containers for information which describe transactions. This includes removing,
adding and editing of CatalogItems or StockItems. The information itself is represented by
DataBasketEntry objects. DataBasketEntries are not directly stored in DataBaskets. Instead the
DataBasket consists of one or more SubDataBaskets which in turn contain DataBasketEntries.

Through the possibility of saving many SubDataBaskets, the user has the option of having many
”saving points” in a DataBasket. The problem of data corruption (changes in a SubBasket must
also be changed in the other SubBaskets, which is often forgotten) must be solved by the pro-
grammer, the framework does not test the consistency.

In practice usually only one SubBasket is used for every DataBasket. This is also the standard
configuration when creating a DataBasket.

1.1.2 Design of DataBasketEntries

DataBasketEntries describe transactions of StockItems or CatalogItems and contain the follow-
ing attributes:

• mainKey : differentiation of the type of DataBasketEntry: for StockItems or CatalogItems

• secondaryKey : the key of the CatalogItems or StockItems, for which a transaction is
described by the DataBasketEntry

3

1.1. DATABASKETS CHAPTER 1. DATA MANAGEMENT

• value : the CatalogItem or StockItem, for which a transaction is described by the Data-
BasketEntry. The key of this item corresponds to thesecondaryKey or the DataBasket-
Entry

• source : the container (Catalog or Stock), from which the item is removed. Item refers
to the CatalogItem or StockItem for which this DataBasketEntry was created

• destination : the container (Catalog or Stock) to which the item is added

• handled : describes, whether a commit or rollback of this DataBasketEntry has already
been performed

1.1.3 Design of DataBasketConditions

DataBasketConditions are filters for DataBasketEntries. Hence they contain the largest number
of attributes of DataBasketEntries:

• mainKey : differentiation of the type of DataBasketEntry: for StockItems or CatalogItems

• secondaryKey : the key of the CatalogItems or StockItems for which a transaction is
described by the DataBasketEntry

• value : the CatalogItem or StockItem for which a transaction is described by the Data-
BasketEntry

• source : the container (Catalog or Stock) from which the item is removed

• destination : the container (Catalog or Stock) to which the item is added

Additionally there is amatch() method, which returnstrue but needs to be overridden in
special cases. The purpose of this method will be covered in chapter ”Iteration over SubDataBas-
kets”.

In case an attribute has the valuenull , the framework will interpret it as matching.

DataBasketConditions will come into use when iterating over the SubDataBaskets, for example
when acommit() or rollback() is used. (Refer to the section ”Iteration over SubDataBas-
kets”)

4

CHAPTER 1. DATA MANAGEMENT 1.1. DATABASKETS

1.1.4 SubDataBaskets

Design of SubDataBaskets

The main aspect of a SubDataBasket is a HashMapdbeCatagories . Within dbeCate-
gories there are another two HashMaps. One is for StockItemDBEntries and one is for Cata-
logItemDataBasketEntries. Each of these maps contains lists. Stored within these lists are the ac-
tual DataBasketEntry objects. The key through which the lists are saved in their map is the same
key as that of the item which is to be saved as a DataBasketEntry (therefore thesecondaryKey
of the DataBasketEntry). This enables the saving of items with the same name and of the same
type, for example saving two CatalogItems, both called ”item1”, in the same SubBasket, hence
allowing collisions.

An example would be: if three times five StockItems ”item1” are erased from a CountingStock,
there are three DataBasketEntries which are written into the same list within the map for the
StockItemDBEntry. The framework can access these lists through the key ”item1”. The three
DataBasketEntries are identical:

• mainKey : MAINKEY: STOCKITEMIMPL

• secondaryKey : item1

• value : 5

• source : The Stock object, from which the items have been removed

• destination : null

Iteration over SubDataBaskets

SubDataBaskets have their own iterator, which can be accessed through the methoditerator
(DataBasketCondition dbc, boolean fAllowRemove, boolean fShow-
Handled) .

The nested structure of SubDataBaskets makes it necessary to iterate in 3 steps.

• over the HashMapdbeCategories . The used iterator is callediCategories .

• over the HashMap that contains the lists with the StockItemDBEntries and CatalogItem-
DataBasketEntries. The used iterator is callediSubCategories .

• over the lists in the SubCategories, which themselves consist of the actual DataBasket-
Entries. The used iterator is callediItems .

5

1.1. DATABASKETS CHAPTER 1. DATA MANAGEMENT

All three iterators are defined globally in the class SubDataBasket.

hasNext() and next()

The methodshasNext() andnext() both make use of the methodfindNext(boolean
fGet) . While hasNext() executesfindNext() with the parameterfGet = false and
returns the result value it receives,fGet for next() is true . The returned value is the global
variabledbeCurrent , in which the returnedDataBasketEntry is saved. The actual sav-
ing of the DataBasketEntries indbeCurrent is done in the methodcheckItems(boolean
fGet) .

findNext(boolean fGet)

The method consists of a do-while loop. It starts withcheckSubCategories(boolean
fGet) . If true is returned, there was a SubCategory with a fitting DataBasketEntry found in
the category (which is either the Map for StockItems or CatalgItems). In casefGet is true , an
entry was saved indbeCurrent . True is returned and the method finished.

If no DataBasketEntry was found, the next category must be scanned, if existing. This is achieved
by letting the iteratoriCategories continue running to the next category. For the new cate-
gory an iterator is created and saved asiSubCategories , it will then be used by the method
checkSubCategories() , during the next execution of the do-while loop, in order to iterate
over the subcategories of the category.

In case a DataBasketCondition has been passed to the constructor of the iterator, there will be
a check whether themainKey of the condition isnull , or if the mainKey s of the Data-
BasketEntry and DataBasketCondition are identical. If not, this category will be skipped and the
following category will be examined the next time the do-while loop is executed. If there is no
category left,findNext() finishes returningfalse .

checkSubCategories(boolean fGet)

The method works in analogy tofindNext() , only one hierarchy level below it. Thus, at
the beginning of the do-while loop, it will be tested whether fitting DataBasketEntries can be
found in the items of the subcategory usingcheckItems(boolean fGet) . If yes, the
method will be ended withreturn true , else it will go to the next subcategory, on which
the iteratoriItems is defined, to iterate over the items of that next subcategory. Here again
the DataBasketCondition must be considered. A subcategory is taken into consideration, if the
secondaryKey of the condition is identical to the key of the subcategory ornull .

checkItems(boolean fGet)

First the method checksdbeNext . If it is not null , the presence of a fitting DataBasketEntry
has already been detected by an earlier iteration step andtrue is returned. If additionallyfGet
is true , meaningcheckItem() was executed by thenext() method,dbeNext is saved

6

CHAPTER 1. DATA MANAGEMENT 1.1. DATABASKETS

in dbeCurrent . Yet if dbeNext is null , it is unknown whether another DataBasketEntry
exists. ThereforeiItems iterates over the current list of items. Every DataBasketEntry is
tested for matching the search criteria. A DataBasketEntry matches if:

• it has been ”handled” (see Commit of DataBasketEntries) andfShowHandled is true

• the DataBasketCondition isnull or matches the DataBasketEntry, thus corresponding in
source , destination andvalue . If the value of theDataBasketCondition
is null , thematch() method decides whether the DataBasketCondition fits the search
criteria.

If a suitable DataBasketEntry is found, it is saved indbeNext or, if fGet is true , directly in
dbeCurrent . Finally the method is finished returningtrue . In case no suitable entry is found
false is returned.

1.1.5 Commit of DataBasketEntries

A commit() on DataBasketEntries is passed to the SubDataBaskets by the DataBasket. A
DataBasketCondition can be specified. Thecommit() will then only be executed for Data-
BasketEntries which match the DataBasketCondition. Alternatively acommitSubBasket()
can be used to address a specific SubDataBasket which should be committed. Accessing a spe-
cific SubBasket for a commit and at the same time giving it a DataBasketCondition as a filter is
not possible. If needed, this function can be easily implemented in a subclass of DataBasketImpl.

SubDataBaskets pass the commit to their entries. It is iterated over the SubDataBasket using
a possibly passed DataBasketCondition as a filter. (see: Iteration over SubDataBaskets). For
each DataBasketEntry, which is returned by the iterator acommit() is executed, provided the
DataBasketEntry is not marked ashandled . Finally theremove() method of the iterator is
used to delete the DataBasketEntry from the SubDataBasket.

When committing a DataBasketEntry,handled is set totrue to indicate that the entry has
been processed and does not represent an active transaction. After this there is acommit-
Remove() executed for the source of the DataBasketEntry, which is saved as the attribute
source . For the destination of the entry, which is described by the attributedestination , a
commitAdd is performed. This causes temporarily added or removed items to be finally added
to or removed from their source. More details about the methods can be found in the documen-
tation on Catalogs and Stocks.

7

1.2. CATALOGS CHAPTER 1. DATA MANAGEMENT

1.1.6 Rollback of DataBasketEntries

A rollback() functions in analogy tocommit() . During arollback() on a DataBasket-
Entry arollbackAdd() or rollbackRemove() is executed, which leads to the removal
of temporarily added items and addition of temporarily removed items.

Further details to these methods can be found in the documentation on Catalogs and Stocks.

1.1.7 Meaning of the Flag fHandled

On first view, the flagfHandled appears unnecessary since the fully processed DataBasket-
Entry is deleted from the SubDataBasket when acommit() or rollback() is executed. Yet
it is possible to execute acommit() or rollback() ”by hand” without erasing it from the
SubDataBasket. To ensure data integrity every processed DataBasketEntry is invalidated via
handled .

1.2 Catalogs

1.2.1 Design of Catalogs

Catalogs are containers for CatalogItems. The CatalogItems within a Catalog can be in different
states:

• They can belong to the catalog.

• They can temporarily belong to the catalog, this case is given when added with a Data-
Basket.

• They can be temporarily removed from the catalog with the help of a DataBasket.

• They can have the status ”editable”.

A catalog knows all its CatalogItems and every CatalogItem knows its catalog. The term ”Parent
Catalog” is applied here.

The above mentioned four states are represented by four Maps:

• mItems : contains the CatalogItems of the catalog.

• mTemporaryRemoved : contains CatalogItems which have been removed through a
DataBasket until a commit or rollback is executed.

8

CHAPTER 1. DATA MANAGEMENT 1.2. CATALOGS

• mTemporaryAdded : contains CatalogItems which have been added through a Data-
Basket until a commit or rollback is executed.

• mEditingItems contains CatalagItems presently editable.

1.2.2 Editability of Catalogs

As Catalogs are CatalogItems themselves, they can be ordered hierarchically. The catalog in
which another one is contained, is the parent catalog. The editability of catalogs follows the
same rules as CatalogItems. A catalog is editable when one of the following applies:

• it does not have a parent catalog

• it is contained inmEditingItems of the parent catalog

1.2.3 Addition of CatalogItems

CatalogItems are added to a catalog via theadd(CatalogItem ci, DataBasket db)
method. First it is verified whether the catalog is editable, if not, the method is terminated by a
NotEditableException .

Then it is verified, whether the CatalogItem is contained in one of the maps, hence already
in the catalog. In case the CatalogItem is contained inmItems or mTemporaryAdded , a
DuplicateKeyException is returned and the operation terminated. A CatalogItem cannot
appear twice in the same catalog.

In case the CatalogItem is inmTemporaryRemoved , adding it would nullify the previous re-
moval. Precondition herefore is that both removing and adding use the same DataBasket. In
this case, arollback() is executed on the temporary removal and the modification counter
increased, else aDataBasketConflictException is thrown. If during this time the tem-
porarily removed CatalogItem was added to another catalog, there will also be aDataBasket-
ConflictException .

After these tests are completed, the actual adding is performed. In casenull was used as a
DataBasket, the CatalogItem is directly saved inmItems , else inmTemporaryAdded . In
the second case an entry must be inserted into the DataBasket, which describes the addition. A
CatalogItemDataBasketEntry is created, which has the current catalog set as its destination. It
is possible, that there is already an existing DataBasketEntry for the CatalogItem. This is given
when the CatalogItem was temporarily removed from another catalog. In this case the entry is
updated, so that the temporary addition is recorded.

Finally the modification counter is increased, the CatalogItem is given a reference to the catalog
it belongs to and listeners are informed that the CatalogItem has been added.

9

1.2. CATALOGS CHAPTER 1. DATA MANAGEMENT

1.2.4 Removal of CatalogItems

CatalogItems are removed either viaremove(CatalogItem ci, DataBasket db) or
remove(String sKey, DataBasket db) . Additionally the removed CatalogItem is re-
turned.

The methodremove(String sKey, DataBasket db) mainly performs a few tests and
then callsremove(CatalogItem ci, DataBasket db) itself. Therefore the latter shall
be further examined.

Before the removal it is tested whether the catalog is editable, if not, aNotEditableExcep-
tion is thrown and the removal cancelled. As a next step it is examined in which form the
CatalogItem is contained in the catalog.

If it is in mTemporaryAdded , a removal may have the same effect as undoing a temporary
addition. This is only possible if the same DataBasket was used for addition and removal.
If so, listeners are asked whether the CatalogItem can be removed. If no listener vetoes, a
rollback of the temporary removal is executed. In case the CatalogItem has not only been
added to this catalog but also temporarily removed from another, arollback() cannot be
performed. The reason herefore is that therollback() will also undo the temporary removal
from the other catalog. Instead therollback() of the temporary addition is simulated: the
destination field of the DataBasketEntry is set tonull , the CatalogItem is removed from
mTemporaryAdded , the modification counter is increased and listeners are informed of the
changes. Finally the reference of the CatalogItem to its catalog is erased and a CatalogItem
returned.

In case the CatalogItem is inmTemporaryRemoved , it cannot not be deleted again. Therefore
aDataBasketConflictException is thrown.

Further it is tested whether the CatalogItem is inmItems . If not, it is not part of the catalog and
can therefore not be deleted. Theremove() method is exited returningnull . Otherwise the
removal starts.

As a first step listeners are queried whether the CatalogItem may be removed. If no veto is re-
turned, the CatalogItem is deleted frommItems . If the used DataBasket is notnull , the item
is only temporarily removed. Hence it is saved inmTemporaryRemoved . If the DataBasket
contains an entry stating that the CatalogItem has already been temporarily added to another cata-
log, thesource field of this entry is set to the current catalog’s name. This describes a shifting
operation, as can be achieved with a TwoTableFormSheet. Otherwise a new DataBasketEntry is
saved in the DataBasket recording the removal from the catalog.

Finally the modification counter is increased, the reference from the item to the catalog is re-
moved, listeners are informed of the removal and the CatalogItem is returned.

10

CHAPTER 1. DATA MANAGEMENT 1.2. CATALOGS

1.2.5 Retrieval of CatalogItems

CatalogItems can be fetched from the catalog viaget(String sKey, DataBasket db,
boolean fForEdit) . The parameterfForEdit indicates whether or not to make the re-
turned CatalogItem editable. A CatalogItem retrieved as none-editable can also be edited, but
only for editable ones the DataBasket provides the possibility to rollback changes.

Before the desired CatalogItem is returned some tests are performed. If the CatalogItem is to be
fetched as editable, the catalog must also be editable. If this is not the case, aNotEditable-
Exception is thrown.

If the CatalogItem is inmTemporaryAdded and there is an associated entry in the DataBasket,
the item is returned in case it should not be editable. However, if it should be editable, a test
for a shifting operation is performed. If this is the case, the CatalogItem has been removed
temporarily from a different catalog. Changes to the retrieved CatalogItem would have to be
applied to the CatalogItem which is stored inmTemporaryRemoved of the other catalog and
vice versa. As this is a rare case and would result in a complex implementation, editable retrieval
of shifted CatalogItems is not permitted and aDataBasketConflictException is thrown
instead. If the CatalogItem is not involved in a shifting operation, listeners are queried if the
CatalogItem should allowed to be editable. If no listener vetoes, the CatalogItem is stored in
mEditingItems , listeners are informed that the CatalogItem is now editable and the item is
returned. Theget() method is thus finished.

If the CatalogItem is not temporarily added, it might be located atmItems . If it is, it is returned
in case it should not be editable. If an editable CatalogItem is required, precautions have to
be taken that enable arollback() . It should be noted that the DataBasket must not benull
when retrieving an editable CatalogItem, because with anull DataBasket there is no possibility
to store information that allow arollback() .

First listeners are queried if the CatalogItem should be allowed to be editable. If no listener
vetoes, a shallow clone of the CatalogItem is created using the item’sgetShallowClone()
method which has to be implemented by the application programmer. The original Catalog-
Item is removed frommItems to mTemporaryRemoved , meaning it is temporarily removed.
The shallow clone is added to bothmTemporaryAdded andmEditingItems , meaning it is
marked as temporarily added and editable. That followed two DataBasketEntries which describe
the temporary addition and removal are created and stored in the DataBasket. Then the refer-
ence to the catalog is removed from the original CatalogItem and the shallow clone receives a
reference to the catalog. Listeners are informed about the removal and additon/editability of the
CatalogItem and the shallow clone, respectively. The modification counter is increased and the
shallow clone is returned.

Once a CatalogItem has been made editable, future calls ofget() will always return the shallow
clone. It is irrelevant iffForEdit is true or false . The only possibility to make the
CatalogItem non-editable again is to do acommit() or rollback() .

11

1.2. CATALOGS CHAPTER 1. DATA MANAGEMENT

Saving or Discarding of Changes

Any changes to the CatalogItem are now applied to the clone. Oncommit() the old Cata-
logItem is removed and the shallow clone with all its changes becomes the new original. On
rollback() the shallow clone is deleted and the original CatalogItem is copied back to
mItems .

If the CatalogItem was added temporarily as mentioned previously, no shallow clone is created.
Is a commit() or rollback() still possible? The answer is yes. If changes are made and
approved by acommit() , the temporarily added CatalogItem is copied tomItems with all
changes made, onrollback() it is removed. A shallow clone is not necessary because there
is no original CatalogItem which might have to be restored.

Veto on Editing of CatalogItems

Before CatalogItems are made editable, CatalogChangeListeners of Stocks or Catalogs can veto.
Stocks veto if they contain StockItems which are currently temporarily added or removed and
refer to the CatalogItem to be made editable. Catalogs veto if they have a shallow clone. In that
case the clone must be used to retrieve editable CatalogItems.

1.2.6 Name Change of CatalogItems

The SalesPoint framework provides interfaces and implementations for flexible enforcement of
naming conventions. These are explained first because the renaming of CatalogItems is based
upon these.

To force an object to obey special naming rules it must implement the Nameable interface. The
actual rules are implemented in an object implementing the NameContext interface. The renam-
ing is done by calling thesetName(String sName, DataBasket db) method of the
nameable object. This method should perform the following steps:

• Check for NameContext to benull
The NameContext is saved as an attribute in the nameable object.

1. If yes, the new name is assigned
There are no rules to be obeyed.

2. Otherwise

– MethodcheckNameChange(DataBasket db, String sOldName,
String sNewName) of the NameContext is called.
It checks whether the desired name change is valid, that is, this method defines
the naming rules and enforces their compliance. If the new name is not allowed,
aNameContextException is thrown.

12

CHAPTER 1. DATA MANAGEMENT 1.2. CATALOGS

– The new name is assigned.

– MethodnameHasChanged(DataBasket db, String sOldName,
String sNewName) of the NameContext is called.
It contains internal cleanup code, if necessary.

The actual implementation of the Nameable interface is done in the class AbstractNameable.
CatalogItemImpl and StockItemImpl are subclasses of AbstractNameable. Consequently the
implementation of the NameContext interface is done in CatalogImpl and StockImpl which need
to permit or prohibit name changes of their items. The implemented rule in CatalogImpl is that
no two items can have the same name. StockImpl does not allow any renaming. StockItems
can only be renamed by renaming the belonging CatalogItem. However, on name change of
CatalogItems the StockItems of StoringStocks must also be renamed. This done by the method
internalNameChange() which temporarily detaches the NameContext of a StockItem and
attaches it again after the name has been changed. This method should never be called directly
by the application programmer.

CatalogItems and StockItems receive a reference to their NameContext when they are added to
their Catalogs or Stocks, respectively.

Method checkNameChange()

The methodcheckNameChange(DataBasket db, String sOldName, String
sNewName)of CatalogImpl checks whether the CatalogItem to be renamed is editable, whether
there is no CatalogItem using that name and if the right DataBasket is used.

What happens in detail is the following:

• Check if the CatalogItem is inmEditingItems , if not, aNameContextException
is thrown, stating that the CatalogItem must be made editable first.

• Check inmItems , mTemporaryAdded andmTemporaryRemoved if there is already
a CatalogItem with the same name as the one to be set. If so, aNameContextException ,
stating that a CatalogItem with that name already exists.

• Check if the passed DataBasket is the same as the one the CatalogItem has been made
editable with. If not, aNameContextException is thrown, stating that the DataBasket
does not contain an entry for the CatalogItem to be renamed.

13

1.2. CATALOGS CHAPTER 1. DATA MANAGEMENT

Method nameHasChanged()

After the actual name changenameHasChanged(DataBasket db, String sOldName,
String sNewName) is executed. This method updates the key with which the renamed items
are found by their HashMap. This is done by removing the affected CatalogItems from their
maps and adding them again with their new name as a key. Then the DataBasket is updated.

What happens in detail is the following:

• The renamed CatalogItem which is still saved inmEditingItems under its old key
sOldName is removed frommEditingItems and added again with its new name as a
key.

• The same procedure is performed formTemporaryAdded .
Both of these maps contain the shallow clone created when the CatalogItem has been made
editable. The original CatalogItem is not renamed and thus a name change can be rolled
back.

• Update of the DataBasket
When the CatalogItem had been made editable, a DataBasketEntry has been added de-
scribing the temporary addition of the shallow clone to the catalog. This entry is replaced
by an entry that is almost identical, the only difference is thesecondaryKey which now
matches the new name of the CatalogItem.

Finally the listeners are informed about the name change.

14

Chapter 2

Process Management

2.1 Introduction to Processes

Interaction with SalesPoint applications is achieved by means of processes. Processes require
an environment to run in, the ProcessContext. The Framework provides two of those contexts,
SalesPoint and Shop$ProcessHandle. The latter is an inner class of the Shop meant for back-
ground tasks.

A process works like a finite automaton, it consists of states that are called Gates, and Transitions.
Processes can be suspended. As long as a process is suspended it does not leave its current Gate,
which means that no transitions are executed. Process suspension is necessary if the Shop’s
state is to be saved. Saving the Shop requires all processes to be halted. Processes can only be
suspended on Gates.

Gates are used for the execution of potentially long-lasting actions. The most important imple-
mentation of the interface Gate is the class UIGate which is capable of displaying FormSheets
and therefore enables user interaction.

Transitions are meant to allow gate changes. In addition application specific code can be executed
during a transition, for example processing user input entered in FormSheets.

2.2 Start and Operation of Processes

2.2.1 Preparation of Process Start

A process is run on a SalesPoint by calling the SalesPoint’s methodrunProcess
(SaleProcess p) . The SalesPoint receives a reference to its process. In turn the process
receives a reference to the SalesPoint and the SalesPoint’s DataBasket. Following, the actual

15

2.2. START AND OPERATION OF PROCESSESCHAPTER 2. PROCESS MANAGEMENT

process is started with a call ofp.start() .

If the process is used as a background process, the Shop’s methodrunProcess() is executed.
It creates a new ProcessHandle, establishes references similar to the SalesPoint’srunProcess()
method and inserts the process into the Shop’s list of all active ProcessHandles. If the Shop is
not suspended, a new background process will be started withstart() , otherwise suspended
with suspend() .

2.2.2 Process Start

If a process has been newly created it is initialized first. The flagfSuspended , which indicates
a process’s suspension, is set tofalse . The initial gate of the process is obtained by the method
getInitialGate() which has to be implemented by the application developer. It is then
assigned to the variablegCurGate . If the start() method is called to resume a previously
suspended process the assignment ofgetInitialGate() to gCurGate is omitted.

Then a ThreadtrdMain which calls the methodmain() is created and executed. If the pro-
cess is not resumed but started, the ProcessContext’s methodprocessStarted() is called.
This allows a ProcessContext to react appropriately on a process start. If the ProcessCon-
text is a SalesPoint, the currently displayed FormSheets and MenuSheets are removed. Then
the SalesPoint unregisters itself from the list of display listeners. If the ProcessContext is a
Shop$ProcessHandle, no action is taken on invocation ofprocessStarted() . The next in-
struction isonResumeOrStart() which by default does nothing. It is a hook method that can
be overridden by the application developer to execute special initialization code for his process.
If an error occurs duringonResumeOrStart() a PrintErrorGate is assigned togCurGate .

2.2.3 Process Loop

Then the actual process loop is entered. It runs as long ascCurGate is not null , meaning
the process has neither been finished nor suspended. Within the loop a SaleProcess$SubProcess
trdGate is created and executed. In this document it will be referred to as gate thread.

SaleProcess$SubProcess is a subclass of Thread. It extends Thread by the ability to catch the
ThrowableProcessErrorError . The gate thread’s task is to return a transition and as-
sign it to the variabletCurTransition . This happens by calling thegCurGate ’s method
getNextTransition() . If the process is suspended before it can return a transition, mean-
ing fSuspended is true , tCurTransition is set tonull and the process loop is left.

As soon as the gate thread has returned, a SaleProcess$SubProcesstrdTransition is created
and executed. It will be referenced as transition thread in this document. The transition thread
returns the next gate to jump to by callingtCurTransition.perform() . The returned
gate is saved in the variablegCurGate . If there is an attempt to suspend the process while

16

CHAPTER 2. PROCESS MANAGEMENT 2.3. FUNCTION OF UIGATES

the transition thread is still active, the suspension command will be ignored. But as soon as the
transition thread has returned and a gate has been found,onSuspended() is called. This is
a hook method for the application developer to override. By default this method is empty but it
can be used to execute a certain action if a suspend command occurs. If the process has not been
finished or suspended, the process loop is executed again.

2.2.4 Process Finish

After leaving the process loop the hook methodonFinished is called. If the process has been
finished and not only suspended, the process context’sprocessFinished() method is also
executed. If the context is a SalesPoint,processFinished() will remove the SalesPoint’s
reference to the process. Additionally the changes made byprocessStarted() on process
start are cancelled: the SalesPoint registers as a FormSheetListener at the display again and
FormSheet and MenuSheet are set.

If processFinished() of a ProcessHandle is executed, the reference of the finished pro-
cess to the handle is removed and the handle itself is removed from the Shop’s list of active
ProcessHandles.

2.3 Function of UIGates

As mentioned above, a process is basically an alternation of gates and transitions. The most
often used gates are UIGates. These provide the possibility to change a SalesPoint’s FormSheet
and MenuSheet. Thus UIGates enable the application programmer to use processes for user
interaction.

Every gate has the methodgetNextTransition() with which the process that is in control
of the gate can query the next transition to be executed. However, in a UIGate the return of a
transition must often be deferred until the user has explicitly initiated an action which causes that
transition to be returned. This is the reason whygetNextTransition() consists mainly of
a loop that is not left before the User performs an action which explicitly starts a transition.

The UIGate uses an integer flagnChanged which shows, whether a FormSheet, a MenuSheet
or a transition has been set. On start ofgetNextTransition() the transition to be executed
next is initialized withnull . In the flagnChanged is saved that FormSheet and MenuSheet
have changed. The reason is that there have been a FormSheet and a MenuSheet set on con-
struction of the UIGate object. However, they have not yet been displayed on the SalesPoint.
Marking both sheets as changed causes the following loop to execute code that actually displays
the sheets.

Then a loop is entered and is executed as long asnChanged denotes that no transition has
been set. IfnChanged indicates that a FormSheet or MenuSheet has changed, the process

17

2.4. FUNCTION OF TRANSITIONS CHAPTER 2. PROCESS MANAGEMENT

context’s methodssetFormSheet() or setMenuSheet() are called and the sheets are set.
SubsequentlynChanged is set toNOTHING. The loop’s body has been processed and could be
executed again. This makes no sense, because it is unlikely that a user has caused a change of
a transition, a FormSheet or a MenuSheet during one iteration of the loop. Most of the time the
loop would run and find no changes. That is why the current thread is put to sleep.

The class UIGate contains the methodssetFormSheet() , setMenuSheet() and
setNextTransition() . They all work identically in principle. Fist the attribute to be
changed - the FormSheet, the MenuSheet or the transition - is saved in an appropriate local vari-
able, thennChanged is updated to indicate which attribute has changed. Then the thread which
has been put to sleep is awakened.

As a result the loop ingetNextTransition() is executed again. If a transition has been
set, the loop is left immediately and the transition is returned, giving control to the process which
can now execute its new transition thread. Otherwise the FormSheet or MenuSheet is updated as
mentioned above and the loop thread is put to sleep again.

2.4 Function of Transitions

A transition’s methodperform() is the equivalent ofgetNextTransition() for Gates.
It returns the next gate to the controlling process. Withinperform() arbitrary code can be ex-
ecuted, but the developer should take care that no user interaction is implemented in a transition,
because that would prevent the process from being suspended and the whole application could
not be closed.

18

Chapter 3

Display Management

3.1 Introduction to Displays

Displays make it possible to display FormSheets and MenuSheets in different ways without
knowing or explicitly supporting the different displays. A Display contains a FormSheet and a
MenuSheet. How those are displayed is encapsulated in the individual Display. There might be
need of a controlling instance.

The Framework contains three different types of Displays:

• JDisplayFrame: Each Display is displayed as an individual window.

• JTabDisplay: Each Display is shown as a tab. All tabs are are displayed in a shop window.

• InternalDisplay: Each Display is a window, comparable to JDisplayFrame. But other than
with JDisplayFrame, these windows can not be moved over the whole screen, but only
within the boundaries of the shop window (refer to JDesktopPane).

3.1.1 Connection of SalesPoints and Displays

Even though Displays are used to display FormSheets and MenuSheets of a SalesPoint, JDis-
playFrame, JTabDisplay and JInternalDisplay are not dependent on SalesPoint, the Shop and the
shop window. This makes it possible to use Displays, including FormSheets and MenuSheets,
without SalesPoints.

Since communication between SalesPoint and the shop window is necessary, the classes Dis-
playFrame, TabbedFrame and DesktopFrame are defined within the class MultiFrame (the shop
window) to extend the original Displays. These have a reference to their SalesPoints as well as

19

3.2. TITLE OF DISPLAYS CHAPTER 3. DISPLAY MANAGEMENT

their shop window and are able to manipulate each of them on demand. For further details refer
to MultiWindow.

3.1.2 Correlation of FormSheetContainers and Displays

FormSheetContainers are objects that contain FormSheets and are able to display those. Status
changes in the FormSheet, that are supposed to change the swing surface on the screen, are sent
to the FormSheetContainer. That implies that the FormSheetContainer is responsible that those
changes - if necessary - are displayed on the screen. FormSheetContainers decouple FormSheets
and their Displays.

In the framework FormSheetContainers exist in combination with the Displays. In this combina-
tion the Displays have the responsibility for the ”user view”, that means they are displaying the
swing surface on the screen. The FormSheetContainer is responsible for the ”framework view”,
the accepting, processing and/or passing of events that relate to changes in the FormSheet. A Dis-
play and a FormSheetContainer represent a unit that performs jobs as described in the following
paragraph.

This is the reason that the methodgetDisplay() of a FormSheet does not return a Display
but a FormSheetContainer. The FormSheet itself uses the ”framework view”.

JDisplayFrame, JTabDisplay and JInternalDisplay implement the interface Display but not the
FormSheetContainer. The FormSheetContainer is implemented as an inner class and saved as an
attribute. This way was chosen since it causes less effort in serialization.

3.2 Title of Displays

Each of the displays JDisplayFrame, JTabDisplay and JInternalDisplay possess two titles, a pri-
mary title and a secondary title. The primary title is usually the name of the Salespoint, the
secondary title is the name of the displayed FormSheet. For bothnull is allowed and as a result
no title is displayed. Primary and secondary title are not required by the interface Display.

3.3 Setting of FormSheets

A FormSheet is assigned to a Display withsetFormSheet (FormSheet fs) . In the case,
that there is already a FormSheet assigned, thecancel() method of the already assigned
FormSheet will be executed. The result is the execution of the display’s methodcloseForm-
Sheet (FormSheet fs) . (refer to 3.4 Removal of FormSheets)

20

CHAPTER 3. DISPLAY MANAGEMENT 3.4. REMOVAL OF FORMSHEETS

Afterwards the complete content of the ContentPane belonging to the Display is removed. In
case the returned FormSheet is notnull , the complete content is made visible on the Display:

• Setting the Secondary title according to the name of the FormSheet

• Attaching the FormSheetContainer to the new FormSheet

• Adding the FormSheet’s component to the ContentPane of the Display

• Adding the FormSheet’s button bar to the ContentPane of the Display

• In the case that another FormSheet was displayed before the new FormSheet was set, the
Display is repainted. This ensures that everything is displayed properly.

Following this step the Listeners are informed that a new FormSheet is set.

In casefs.getWaitResponse() is true , the Java thread setting the FormSheet is stopped
until a previously set FormSheet is closed withcloseFormSheet(FormSheet fs) .

3.4 Removal of FormSheets

A FormSheet is removed from a Display using the methodcloseFormSheet(FormSheet
fs) .

During the removal the following things happen. First, the current FormSheetContainer and the
FormSheet are separated and the methodformSheetClosed is called up. Within the method
is defined what the FormSheet has to take care about while closing down. This method is a so
called hook method, which can be overridden to change the standardprocedure of the Display
while closing down. UsuallyexitForm is called, that makes the Display invincible and shuts
it down afterwards.

Following the removal of the FormSheet all threads, that were blockaded are continued. In the
end all Listeners are informed that the FormSheet was removed.

3.5 Display Size

CallingsetBounds (Rectangle r) sets the position and size for JDisplayFrames and JIn-
ternalDisplays. The first two coordinates of the rectangler represent the position and the last
two the hight and the width of the window. Additionally the current position of the borderlines
are saved.

In JTabDisplay the handed over rectangle is also saved. But in this case it is not possible to
change the length and the width, since the size of a tab depends on the content.

21

3.6. USABLE DISPLAYS CHAPTER 3. DISPLAY MANAGEMENT

3.6 Usable Displays

Displays have aisUsableDisplay() method which always returnstrue . The only excep-
tion is a class called NullDisplay, that is a dummy-display used for a background process. These
background processes are not allowed to display MenuSheets or FormSheets.

22

Summary

This report explains in detail the functions of Data Management, Process Management and Dis-
play Management.

Catalogs keep their data by means of CatalogItems. Those CatalogItems can be added to, re-
moved from or read out of Catalogs, additionally they can be editable, meaning that any changes
applied to them can be rolled back. With DataBaskets, a transaction management is made pos-
sible which is comparable to transactions used within databases with respect to committing and
rolling back data changes.

Interaction with SalesPoint applications is achieved by means of processes. Processes are an
alternation of gates and transitions. Gates and transitions are implemented internally by the pro-
cess through threads which work in a synchronized manner. User interaction should be allowed
only at gates.

Displays are the interface between the software and the user. A Display contains a FormSheet
and a MenuSheet. The Framework contains three different types of Displays: JDisplayFrame,
JTabDisplay and JInternalDisplay. Since communication to SalesPoint is necessary, the classes
DisplayFrame, TabbedFrame and DesktopFrame are defined to extend the original Displays.

The future of SalesPoint:

Every year questionnaires are given out where the students are encouraged to bring up criticism
and ideas concerning the framework. Frequently mentioned issues are improved if possible.
Through this it was discovered that changes in Storage Management (not covered by this report)
and visual improvements are desired.

The standards and understanding of ”good” Software change through time. But since every year
another group of students uses the framework, the standard and the functions of the framework
are up to date and provide features which a majority of the programmers considers to be useful.

23

