

Measurement-based Admission Control in the AQUILA Network and Improvements by Passive Measurements

Marek Dabrowski¹ and Felix Strohmeier² ¹Warsaw University of Technology, Poland ²Salzburg Research, Austria

Art.-QoS 2003, March 24-25, Warsaw

Outline

Introduction

- MBAC method based on the mean bit rate
- Improving MBAC by measuring the bit rate variance
- A method for measuring the variance of traffic
- Conclusions

Introduction

The AQUILA architecture defines a set of Network Services

• Each dedicated for carrying different type of traffic

Admission Control (AC) is invoked for guaranteeing QoS

- DBAC (Declaration-based AC) approach
 - Precise declaration a-priori is difficult
- MBAC (Measurement-based AC) approach
 - Possible simplification of traffic declarations
 - Possible better network utilisation
 - Capturing stochastic characteristics of user traffic

Practical applicability of two MBAC methods was investigated

- Based on measured mean rate
- Based on measured rate variance

MBAC for AQUILA PVBR service

Designed for handling streaming VBR traffic

- Target QoS objectives: low packet losses and low packet delay
- Typical application: real-time video

REM (Rate Envelope Multiplexing) assumed for the AC

- Buffer-less link model
- Fluid-flow model of the source behaviour
- Packet loss ratio as the QoS parameter

MBAC with known mean bit rate of traffic

Hoeffding bound algorithm [Floyd96]

- Simple user traffic declaration: only peak bit rate, h_i
- Simple measurements: only aggregate mean rate, M
- Profit over DBAC when users over-declare the submitted traffic

$$h_0 + M + \sqrt{\frac{g}{2}(\sum_{i=1}^N h_i^2 + h_0^2)} \le C$$

Implementation of MBAC in AQUILA

Mean bit rate measurements performed by ACA

- Polling the router in constant time intervals *L* (in the order of sec.)
 - Number of transmitted bits, D_{i} , sent to the ACA
- Mean rate within the polling interval $S_j = \frac{1}{L}$
- Stationary mean rate estimated using "moving window" algorithm
 - Arithmetic mean from W latest bit rate samples S_j (j=1,...,W)

Verification of MBAC in the trial network (1)

Laboratory testbed in Warsaw

Artificial traffic was submitted to the PVBR service

- Poisson traffic model at the flow level
- Trace-driven traffic at the packet level
- MBAC on the ingress link ER1-CR1

Verification of MBAC in the trial network (2)

Mean bit rate measured in the ACA1 was monitored for the period of the test

The measured value closely follows the real mean bit rate

 Hoeffding bound MBAC can be effectively applied in practical implementations of QoS IP networks

Improving MBAC by measuring the variance

Hoeffding bound MBAC

Profitable when declared sustained rate is greater than the real mean rate

MBAC with known bit rate variance [Brichet&Simonian98]

- More complex declarations: peak bit rate, h_i , and sustained bit rate, r_i
- More complex measurements: variance of the aggregate traffic, V (assuming fluid-flow model)

$$e_{0} + \sum_{i=1}^{N} e_{i} - \boldsymbol{d}_{K+1} \left(\sum_{i=1}^{K+1} r_{i} (h_{i} - r_{i}) - V \right) - \sum_{K+2}^{N} \boldsymbol{d}_{i} r_{i} (h_{i} - r_{i}) \leq C$$

$$\boldsymbol{d}_{i} = \frac{(h_{i} - e_{i})e_{i}}{h_{i}^{2}(h_{i} - r_{i})\log\left(\frac{h_{i} - r_{i}}{h_{i} - e_{i}}\right)} \left[\frac{h_{i}(e_{i} - r_{i})}{r_{i}(h_{i} - e_{i})} - \log\left(\frac{e_{i}(h_{i} - r_{i})}{r_{i}(h_{i} - e_{i})}\right)\right]$$

$$\sum_{i=1}^{K} r_i (h_i - r_i) \le V \le \sum_{i=1}^{K+1} r_i (h_i - r_i) \qquad \frac{1}{h_i} \log \frac{e_i (h_i - r_i)}{r_i (h_i - e_i)} - \frac{1}{e_i} \log \frac{h_i - r_i}{h_i - e_i} = \frac{g}{C}$$

Effectiveness of variance-based MBAC

A homogenous set of Star Wars IV movie sources

- h = 0.94Mbps, m = 0.15Mbps
- fluid-flow var = **0.008**Mbps² << worst-case var = **0.067**Mbps²
- r/m represents the difference between user's declaration and submitted traffic

Var-based MBAC admits more flows than the DBAC

Hoeffding bound MBAC is more efficient when r/m is high

Measuring the variance of traffic

- Step 1: Monitoring the packet arrival process
 - Monitoring the number of transmitted bits
- Step 2: Conversion into the approximation of fluid-flow model
 - Averaging traffic rate within constant 40ms intervals
 - 40ms intervals: duration of frame period of MPEG video source (natural timescale for variability of MPEG-source traffic)

Step 3: Estimation of stationary variance

Moving window mechanism

information society technologies

Verification of the measurement procedure by simulations

- 54 flows, generated according to Star Wars IV trace
- Measurement window set to W=200 (8 sec.)

- The estimate fluctuates around the stationary variance
 - Slightly underestimates the real value of fluid-flow variance
- "Estimated" effective bandwidth is close to the theoretical value

Implementation Issues and Feasibility Study (1)

Current AQUILA MBAC approach (router polling)

- Router performance limits the min. length of measurement interval
- For mean rate measurements, polling intervals in the order of seconds are satisfactory
- Not feasible for variance measurements, where polling intervals in the order of milliseconds are required

Implementation Issues and Feasibility Study (2)

Adding capture devices on ingress/egress links

- Disburdens router
- Integration with ACA possible
- Allows for arbitrarily small measurement intervals

Testbed experiments were performed with DAG card and PC computer as a capturing device

Conclusion

MBAC based on mean rate measurements

- Implemented in AQUILA
- Simple measurements, no additional hardware required
- Profit only when users significantly over-declare the traffic

MBAC based on variance measurements

- Gain in network utilisation
- More complex traffic declaration
- More complex measurements

Proposed measurement method

- Makes application of var-based MBAC possible
- Possible enhancement of AQUILA architecture