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Abstract: Differentiated Service Model (DiffServ) is currently a popular research topic as a low-cost method 
to bring QoS to today’s Internet, especially in the backbone. The DiffServ architecture consists of two key 
components: traffic conditioning at the edge and Per Hop Behavior (PHB) at the edge and the core. Traffic 
Conditioners contain various elements such as classifier, meter, marker, shaper and dropper. The PHB 
mechanisms include the queue management and the scheduling.  
This paper addresses the impact of traffic conditioning and PHB mechanisms implemented in routers (edge) 
on the overall performance in Differentiated Services architecture, by using OPNET as the simulation tool. 
We have implemented the single and dual Token Bucket algorithms, the WRED/RIO queuing schemes with 
two sets of parameters (min, max, maxp), the RED dropping schemes, and the packet schedulers First In First 
Out (FIFO) and Weighted Fair Queuing (WFQ). A number of different Network Services has implemented, 
each one using a different traffic class. Each traffic class uses a different traffic profile and output queue. We 
investigate the effect of network transient, as expressed by changes in traffic load, on the performance of the 
scheduling algorithms and queuing/dropping schemes, in terms of both packet delay and queue size require-
ments. The simulation results are relative with the utilization on the backbone interface. 
 
Keywords: Quality of Service, Differentiated Services, Traffic Conditioning, PHB Mechanisms , IP router, 
OPNET Simulation Tool 
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1 Introduction 

The traditional Internet architecture offers best-effort service only. This service does not provide any means of 
preferentially treating traffic from customers who are willing to pay more. There is a distinct need to have a ser-
vice that supports the wide range of applications on the Internet and the simplicity in forwarding mechanisms. 
Differentiated Services (DiffServ) [1] is an approach to IP QoS, which allows Internet Service Providers (ISPs) to 
support disparate applications and user expectations. The differentiated service model uses a comb ination of 
network edge elements (Traffic Conditioners & Per Hop Behaviors) and network core elements (Per Hop Behav-
iors) to achieve service differentiation. The edge and core elements are logically specified that give network 
operators the freedom to construct a wide set of services. 
In the DiffServ model, packets entering a router, are first classified based on their e.g. source address/port, des-
tination address/port. In sequence they experience traffic conditioning that involves metering, shaping and 
marking. After that, they are forwarded to the output interface of the router, where they experience a predefined 
PHB, e.g. EF (Expedited Forwarding), AF (Assured Forwarding), and BE (Best Effort). That involves DS-
classification [2] and forwarding to a corresponding queue. The way these queues are handled is specified by 
the scheduling mechanism used. The packet scheduler is responsible for the order in which the packets of the 
various queues are dequeued and transmitted in the network. 
In our model we use a set of flows with different type of service, which means that each flow corresponds to a 
different traffic class (TCL) [3] and is being transmitted to the different Token Buckets and Queues. Traffic 
classes can be viewed as the Network’s mechanisms to implement the network services (NS) that are offered by 
the network provider to the customer. Five such network services have been identified: PCBR (Premium Con-
stant Bit Rate), PVBR (Premium Variable Bit Rate), PMM (Premium MultiMedia), PMC (Premium Mission Criti-
cal) and Standard. The classes are called TCL1, TCL2, TCL3, TCL4 and TCL-STD respectively. Different appli-
cations are used for each traffic class, such as PCBR is used for voice, PVBR for video and interactive multime-
dia, PMM for low-quality video or file transfer, PMC for e.g. database queries and Standard for Best Effort traf-
fic. 
The rest of this paper is structured as follows: In section 2, an overview of traffic conditioning is given. The 
packet schedulers (FIFO, WFQ, PQWFQ) and queue management (RED / WRED-2 / RIO) algorithms are given 
in Section 3. Section 4 shows the structure of routers and the characteristics for each traffic class that we have 
implemented. In Section 5 the simulations results of the performance comparison are presented and finally Sec-
tion 6 summarizes the major findings. 

2 Traffic Conditioning 

A traffic conditioner is referred to as a set of components that may include a meter, marker, shaper and a drop-
per. Traffic conditioners are usually located within DS boundary nodes (ingress, egress), but may also be lo-
cated in nodes within the interior of a DS domain. The traffic conditioner bases its actions on the traffic profile 
that has been contracted between the user and the provider (as part of a static traffic conditioning agreement 
(TCA) or a dynamic reservation request). We illustrate the Traffic Conditioners with the Token Bucket profiles. 

2.1 Meter/Marker/Shaper/Dropper 

A meter meters each incoming packet and computes the resource consumption of the flow (aggregate) that the 
packet belongs to. The result is passed to the marker, which compares those measured properties to the traffic 
profile that has been contracted for the corresponding flow (aggregate). Depending on how the current meas-
urements relate to the traffic profile packets are marked, i.e., the DS code point is (re) set. In OPNET Simulation 
Tool we (re)-set the Type of Service (ToS) Byte. Packets that get a token are said to be marked as in- profile and 
those that do not get token are said to be marked as out-of- profile [4]. In addition a dropper is implemented in 
order to drop packets (out-of-profile packets) and the shaper works within the Marker. The Token Buckets pro-
tects the small-window flows from packet loss by marking only in- profile for them [5]. The Traffic Conditioning 
functionality is depicted in Figure 2-1. 
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Figure 2-1: The Traffic Conditioning functionality. 

For our purposes we use a single and a dual Token Bucket. The Token Bucket profiles are illustrated in OPNET 
Tool with the Committed Access Rate (CAR) algorithm. 

3 PHB Mechanisms  

After the packet has gone through the input interface of a router (CAR) and has not been dropped, it is inserted 
into the output interface of a router. This queue can be a simple queue holding all the traffic classes or a number 
of queues where each one holds one distinct traffic class. There are various queuing algorithms but only the 
ones implemented are described here. The PHB mechanisms include packet scheduling mechanism and queuing 
management. 

3.1 Packet Scheduling Mechanisms  

The implemented Packet Scheduling Mechanisms are the following: 
First In First Out (FIFO) [6]: In FIFO, the packets that want to use an output link are placed into the output 
queue in the order in which they arrive. FIFO offers high cost-efficiency and no versatility. 
Priority Queuing (PQ) [6]: The Priority Queuing algorithm dequeues the packet with highest priority. Then the 
packet with the next higher priority and finally the packet with the lowest priority. This algorithm has the follow-
ing drawback: when packets from the highest priority are present, the packets in the other queues are probably 
starving. This is  not compliant to the requirements of DiffServ. It is possible that when a source sends too 
much traffic and has the highest priority, may occupy up to 100% of the bandwidth. Therefore, the bandwidth 
should be managed by the SLA (Service Level Agreement) in order to prevent this behaviour. 
Weighted Fair Queuing (WFQ) [6]: The Weighted Fair Queuing algorithm compares the weight for each sub-
queue with the bandwidth share. A packet from the queue with the biggest weight is dequeued. When this 
queue has no packet stored in it (no traffic present), the queue with the next bigger weight is dequeued. With 
this algorithm it is assured that no service occupies more bandwidth on the average than it should except. 
When there is enough bandwidth or when other services are present the excessive bandwidth is shared fair 
among the services. With WFQ a sharing is fulfilled. 
Priority Queuing with Weighted Fair Queuing (PQWFQ) [3]: This algorithm is a combination of the described 
PQ and WFQ, as shown in Figure 3-1. 
 

 
Figure 3-1: The PQWFQ algorithm. 

The TCL1 traffic is dequeued with highest priority, no matter what other traffic is present, in order to support 
the stringent real-time constraints. The rest three traffic classes and BE traffic are dequeued with the WFQ algo-
rithm. The TCL1 has a bandwidth share to which it is tested against, and though TCL1 has the highest priority 
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it cannot grab more than the bandwidth assigned to it. This mechanism allows the other classes to transit their 
traffic regularly. 

3.2 Queuing Management 

The traffic of each user is tagged as being in or out of their service profiles. Packets tagged as in profile are 
assigned lower drop precedence than those tagged as out-of-profile. In the OPNET Tool, the difference of the 
in-profile packets and the out-of-profile packets is determined by the Type of Service (ToS) Byte. We have im-
plemented in the OPNET Tool, the RED, Weighted RED with 2 set of parameters (minth, maxth, maxp) and RED 
In & Out Profile Packets. These algorithms have been controlled and tested. 
Random Early Detection (RED) [7][8][9]: RED allows a router to drop packets before the queue becomes satu-
rated. RED achieves this by dropping packets with a certain probability depending on the average queue length 
(avg) as depicted in Figure 3-2. 

 
Figure 3-2: The RED mechanism. 

The Pmax is determined from the Mark Probability Denominator Attribute at the OPNET Tool. The TCL-STD 
(Best Effort) uses the RED algorithm. 
Weighted RED with 2 set of parameters (minth, maxth, maxp) (WRED) [10]: The WRED algorithm that we 
want to use is different than the one implemented in the OPNET Tool. The OPNET Tool has different minimum 
average queue size for each packet with different ToS Byte, but the same maximum average queue size and 
dropping probability (Pmax). This case is presented in Figure 3-3. 
 

 
Figure 3-3: The WRED mechanism in OPNET. 

The minth(0), minth(1) … minth(7) are the minimum average queue size for the packet with ToS Byte 0, 1, …, 7 
respectively. The function that computes the minth, is given below: 

7/)min(maxmin)(min ToSthththToSth ∗−+=  

Two separate levels of drop precedence can be supported with WRED-2 (Figure 3-4). We distinguish the in-
profile packets from the out-of-profile packets with the ToS Byte. For that reason we set a new parameter that is 
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the ToS Byte. The in-profile packets represent the packets with this ToS Byte and the out-of-profile packets 
represent all the other packets. 

 
Figure 3-4: The WRED-2 mechanism. 

In the OPNET Tool, we set the minth_in, maxth_in, Pmax_in and the ToS Byte for the in-profile packets and the 
minth_out, maxth_out, Pmax_out for the out- of--profile packets. 
The TCL3 & TCL4 use this WRED-2 algorithm. 
RED In & Out Profile Packets (RIO) [11]: The main difference between RIO and WRED-2 is  that WRED-2 
uses one average queue length to calculate drop probabilities, while RIO uses two average queue lengths. 
WRED-2 calculates its average queue length (avg) based on all packets present in the queue. RIO does that too 
but, in addition, it calculates a separate average queue length for packets in the queue tagged as in-profile 
(avg_in), see Figure 3-5. 
 

 
Figure 3-5: The RIO mechanism. 

4 Implementation of Router’s structure and Traffic Classes 

We have used for the simulation topology Cisco routers and traffic generators corresponding to applications 
profiles. The QoS mechanisms in the routers involve schedulers (FIFO, WFQ, PQWFQ), buffer management 
algorithms (RED, WRED, RIO), Token Bucket Profiles (CAR) as explained in Figure 4-1. For each traffic class we 
have configured the edge routers (traffic conditioning, buffering, scheduling) and the core routers (buffering, 
scheduling) [3]. 
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Figure 4-1: The Router’s Structure. 

Each TCL has the following characteristics: 
• For TCL1 we use a Single Token Bucket (TB), which drops the out-of- profile packets. Packets of TCL1 are 

enqueued in the queue 1. The RED algorithm is employed as the queue management algorithm. We set for 
this TCL the ToS Byte to 6. 

• For TCL2 we use the Dual TB, which drops the out-of-profile packets. Packets of TCL2 are enqueued in the 
queue 2. The RED algorithm is employed as the queue management algorithm. The ToS Byte is set to 5. 

• For TCL3 we use a Single TB. Out profile packets are transferred with other Type of Service. Packets of 
TCL3 are enqueued in the queue 3. The WRED algorithm is employed as the queue management algorithm. 
We set for the in-profile packets the ToS Byte to 4 and for the out-of-profile packets to 2. 

• For TCL4 we use a Dual TB. Out profile packets are transferred with other Type of Service. Packets of TCL4 
are enqueued in the queue 4. The WRED algorithm is employed as the queue management algorithm. The 
ToS Byte for the in-profile packets is set to 3 and for the out-of-profile packets to 1. 

• For TCL STD we do not use Token Bucket and the packets are enqueued in the queue 5. The RED algo-
rithm is employed as the queue management algorithm. The ToS Byte is set to 0. 

5 Simulations - Results 

We have used a small-scale simulation topology with one Traffic generator, Background Traffic (BE) and two 
Edge Routers [12]. The link between the two Routers is of low capacity (for TCL1 Scenario is 150kbps or 
200kbps or 250kbps or 300kbps, for TCL2 Scenario is 2.2Mbps, for All-TCLs Scenario is 1Mbps) and consists 
the bottleneck of the network. 

5.1 TCL1 Scenario 

In this scenario we use TCL1 that represents PCBR network service (voice applications) and background (Best 
Effort) traffic (Figure 5-1). A first case uses only a single FIFO and the second one uses for the TCL1 traffic 
conditioning (CAR) and a WFQ mechanism using the RED algorithm. 
The flows for TCL1 that we use for the simulations have constant bit rate 54.4kbps, 88kbps, 120kbps, 200kbps 
and 256kbps with packet size 67.5B, 44B, 60B, 100B, 128B and 291B respectively. 
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Figure 5-1: The Scenario for TCL1. 

 
The maximum Queue Size for FIFO is set to 500 pkts. As depicted in Figure 5-2, the FIFO queuing delay of 
Router 1 for each flow used is bigger than 1 sec [13]. 
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Figure 5-2: FIFO Queuing Delay for TCL1 Scenario. 

In the second simulation we use a single Token Bucket with Peak Rate (PR) equal to 200kbps and Bucket Size 
for PR (BSP) equal to 256B. The weight of WFQ for the TCL1 is set to 60% and for the BE to 40%. The maximum 
queue size for TCL1 is set to 100 pkts and for BE to 500 pkts. The RED is enabled for each flow. The WFQ queu-
ing delay for all flows of TCL1 from Figure 5-3 is less than 9 msec. 
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Figure 5-3: WFQ Queuing Delay for TCL1. 

5.2 TCL2 Scenario 

In the second scenario we use TCL2 that represents PVBR network service (video applications) and a Best Ef-
fort traffic (Figure 5-4). The first simulation has only a single FIFO and the second a traffic conditioning for the 
TCL2 is used and a WFQ mechanism with the RED algorithm for each flow.  
The flows for TCL2 used for the simulations have constant bit rate 1.64Mbps and 2Mbps with packet size 
2050B and 5150B respectively. 
 

 
Figure 5-4: TCL2 Scenario. 

The maximum Queue Size for FIFO is set to 500 pkts. The FIFO queuing delay for both cases of TCL2 is bigger 
than 3 sec (see Figure 5-5). 
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Figure 5-5: FIFO Queuing Delay for TCL2 Scenario. 

In the second simulation we use a dual Token Bucket, where the Sustainable Rate (SR) is set to 1Mbps, the 
Bucket Size for SR (BSS) to 5120B, the Peak Rate (PR) to 5Mbps and the Bucket Size for PR (BSP) equal to 
1024B. The weight of WFQ for the TCL2 is set to 60% and for the BE to 40%. The maximum queue size for TCL2 
is 100 pkts and for BE is 500 pkts. The RED is enabled for each flow. The WFQ queuing delay for all flows of 
TCL2 is less than 40 msec (see Figure 5-6). 
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Figure 5-6: WFQ Queuing Delay for TCL2. 

5.3 Scenario with all TCLs  

In the first case, all flows are enqueued in a single FIFO queue and no queue management algorithm is taking 
place. In the second a Traffic Conditioner is taking place for each TCL and then the flows are enqueued in a 
WFQ queue with 5 sub-queues and RED or WRED is employed as the queue management algorithm. 
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Figure 5-7: Scenario with all TCLs. 

The characteristics for each TCL are described below: 
TCL1: Constant Bit Rate 32kbps, Packet Size 128B, Single Token Bucket with PR=32kbps and BSP=256B. 
TCL2: Constant Bit Rate 600kbps, Packet Size 1024B, Dual Token Bucket with SR=1Mbps, PR=5Mbps, 
BSS=2048B and BSP=1024B. 
TCL3: Constant Bit Rate 60kbps, Packet Size 3125B, Single Token Bucket with SR=100kbps and BSS=15000B. 
TCL4: Constant Bit Rate 200kbps, Packet Size 2048B, Dual Token Bucket with SR=5kbps, PR=50kbps, 
BSS=10240B and BSP=2048B. 
TCL-STD: Constant Bit Rate 822.4kbps, Packet Size 1024B, no Token Bucket. 
The maximum Queue Size for FIFO is set to 1000 pkts. The FIFO queuing delay for all TCLs is about 8 sec (see 
Figure 5-8). 
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Figure 5-8: FIFO Queuing Delay for All TCLs Scenario. 

In the second simulation the weight of WFQ for the TCL1 is set to 50%, for TCL2 to 20%, for PMM to 15%, for 
PMC to 10% and for BE to 5%. The maximum queue size for TCL1 and TCL2 is 100pkts, for TCL3, TCL4 and BE 
is 500 pkts. The RED is enabled for each flow. As we can see the WFQ queuing delay for TCL1 is less than 
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8msec, for TCL2 is less than 20msec, for TCL3 is less than 50msec and for TCL4 is less than 80 msec (see Figure 
5-9). 
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Figure 5-9: WFQ Queuing Delay for TCL1, TCL2, TCL3 and TCL4. 

6 Conclusions 

In this paper we have implemented and evaluated the Traffic Conditioning (Token Bucket Profiles), some Packet 
Schedulers (FIFO, WFQ, PQWFQ) and buffer management (RED/WRED/RIO) algorithms, in offering sheltering 
under different loads with background traffic (Best Effort). Through these simulations, we verified the correct-
ness of our design and implementation. We show that the FIFO queuing delay in all scenarios is much bigger 
than the WFQ ones. The basic reason is that, in the FIFO all packets (from different classes) are enqueued to 
the same queue, therefore all TCLs  has the same queuing delay with the BE ones. The WFQ algorithm gives a 
separate queue and different weight (priority) to each TCL and to the BE traffic. In this case, the queuing delay 
is different for each TCL (queue) and is independent of the other TCLs  and background traffic. For that reason, 
the WFQ algorithm has much less queuing delay for the TCLs than the FIFO ones. 
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