

Project Number: IST-1999-10077

Project Title:

AQUILA

Adaptive Resource Control for QoS Using an
IP-based Layered Architecture

Deliverable Type: PU - public

Deliverable Number: IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

Contractual Date of Delivery to the
CEC:

December 31, 2001

Actual Date of Delivery to the CEC: December 21, 2001: version b0
February 26, 2003: version b1

Title of Deliverable: User Guide for End-user Application Toolkit

Workpackage contributing to the De-
liverable:

WP 2.2

Nature of the Deliverable: R – Report

Editor: Falk Kemmel (TUD)

Author(s): Andreas König (BAG), Sotiris Maniatis, Haris
Tsetsekas (NTU), John Karadimas (QSY), Falk
Kemmel (born Fünfstück), Anne Thomas (TUD)

Abstract: This deliverable D2203 reports on the application and
user interfaces, which the EAT provides for the second
AQUILA trial. These are: the QoS API, the QoS
GUI/Portal, the Application Profiles, and the Application
Level Gateways.
The deliverable describes in detail their functionality and
shows usage scenarios.

Keyword List: AQUILA, IST, User Guide, Developer Guide, Applica-
tion Interfaces, QoS API, User Interfaces, GUI, QoS
Portal, Application Profiles, Legacy Applications, Basic
Internet Applications, Application Level Gateways,
Complex Internet Services

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 2 of 99

Executive Summary

This deliverable describes the interfaces of the End-user Application Toolkit (EAT) towards the ap-
plications and users of the second AQUILA trial.

“The modular End-user Application Toolkit will be made available in time to be used in the
development of the applications for the second trial. As a working document for the develop-
ment of the end user applications for the second trial, this deliverable will provide a detailed
guide of how to apply the End-user Application Toolkit, including a full explanation of the
software architecture used for application services. Target audience for this deliverable are
the developers of end-user applications.” [Technical Annex]

This deliverable therefore focuses on the detailed description of the functionalities offered by the
EAT. This includes also some scenarios on how to use the functionalities for so-called Basic Internet
Applications as well as for Complex Internet Services.

One of the outcomes of the first trial is that Basic Internet Applications (here also called legacy appli-
cations) can be supported by the AQUILA architecture by providing different mechanisms such as
Graphical User Interfaces (GUIs), Application Profiles, and Protocol Gateways (here also called
Application Level Proxies). However, this support needs the involvement of (human) customers
(end-users), because legacy applications cannot be modified in order to be QoS-aware.

Consequently, this deliverable also includes the explanation of the user interfaces the EAT offers.
Moreover, user interfaces are an essential part of modern (complex) Internet services that provide
multimedia services towards Internet users.

In that way, the application and user interfaces, developed for the first trial, can – with some modifi-
cations – be reused for the applications of the second trial. More specifically, the application and
user support will be based on the following main “pillars”:

• An Application Programming Interface (API) for QoS-aware applications,

• Graphical User Interface for manual reservation in different modes,

• Application Profiles to allow QoS mapping from a technical to a user-friendly level, and

• Application Level Proxies to support some special application signalling protocols.

The one responsible middleware that offers all these interface is the EAT which acts as the only QoS
portal to the AQUILA’s RCL controlled network.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 3 of 99

Table of Contents

1 INTRODUCTION..7

2 APPLICATION INTERFACES...8

2.1 APPROACH ..8

2.2 EAT API...10

2.2.1 Description of Functionality..10

2.2.2 Usage Scenario ..16

2.3 GRAPHICAL USER INTERFACES – THE AQUILA PORTAL...19

2.3.1 Login ...19

2.3.2 Advanced and Regular Reservation Requests ...20

2.3.2.1 Regular Reservation GUI...20

2.3.2.2 Advanced Reservation GUI...23

2.3.3 Active Reservations ...26

2.3.4 Logout...28

2.3.5 Navigation/Appearance...28

2.4 APPLICATION PROFILES...28

2.4.1 Definition Application Profiles..28

2.4.2 Specification of Application Profiles at Application Level...30

2.4.3 Specification of Application Profiles at Network Level...31

2.4.4 Utilisation ...33

2.5 PROXIES..34

2.5.1 Use of the Proxies..34

2.5.1.1 GUI-initiated Reservation ...35

2.5.1.2 Proxy -initiated Reservation...35

2.5.2 Implementation of a new Proxy ...36

2.6 EAT SCRIPT ..40

2.6.1 Script Specification ...40

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 4 of 99

2.6.1.1 Document Type Definition...40

2.6.1.2 XML Examples ...41

2.6.2 Command Line Tool..41

3 APPLICATION SCENARIOS ... 43

3.1 BASIC INTERNET APPLICATION SUPPORT ...43

3.1.1 User-initiated Approach...44

3.1.2 EAT-initiated Support ..44

3.1.3 Reservation Units and Groups..44

3.2 COMPLEX INTERNET SERVICE SUPPORT ..45

3.2.1 Recommendations for the Creation of QoS Level..45

3.2.2 Recommendations for the Creation of a Set-up Menu for the QoS Service...47

3.2.3 Recommendations for the Interaction of the CIS and the EAT..50

3.2.4 Recommendations for the Feedback on the Status of the Connection of the QoS Categories...............53

4 CONFIGURATION GUIDE FOR EAT.. 55

4.1 EAT SETTINGS..55

4.2 PROXY SETTINGS ...56

5 ABBREVIATIONS... 57

6 REFERENCES ... 60

APPENDIX... 61

THE APPLICATION PROGRAMMING INTERFACE ..61

api.idl...61

SampleClient.java ..75

APPLICATION PROFILE...84

ApplicationProfile.dtd ..84

ServiceComponentProfile.dtd..85

Example for Application Profile: NetMeeting_3.01_AppProfile_v01.xml ...90

Example for Service Component Profile: NetMeeting_3.01_Video_v01.xml...90

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 5 of 99

EAT SCRIPT ..93

EATScript.dtd..93

Example.xml...95

Example1.xml...97

EAT & PROXY CONFIGURATION ...98

eat.dtd ...98

Example: eat_dresden.xml...98

proxy.dtd...98

Example: sip_dresden.xml...99

Table of Figures

FIGURE 2-1: THE DIFFERENT APPLICATION INTERFACES OF THE EAT...9
FIGURE 2-2: APPLICATION AND USER INTERFACES OF THE EAT...10
FIGURE 2-3: THE EAT API (1)...11
FIGURE 2-4: THE EAT API (2)...15
FIGURE 2-5 THE LOGIN GUI..20
FIGURE 2-6: THE MENU OF THE AVAILABLE APPLICATIONS ...21
FIGURE 2-7: THE REGULAR RESERVATION GUI...22
FIGURE 2-8: THE ADVANCED RESERVATION GUI...24
FIGURE 2-9: THE ACTIVE RESERVATIONS GUI..27
FIGURE 2-10 : EXAMPLE OF THE ARCHITECTURE IN THE COMPLEX INTERNET SERVICE SCENARIO SHOWING THE

COMBINATION OF NON-QOS AWARE BASIC INTERNET APPLICATIONS AND APPLICATION PROFILES.......29
FIGURE 2-11: APPLICATION ANALYSIS DIAGRAM AND THE ACCOUNTABILITY KNOWLEDGE LEVEL PATTERN ..31
FIGURE 2-12: ANALYSIS UML CLASS DIAGRAM OF THE APPLICATION AT APPLICATION AND NETWORK LEVEL32
FIGURE 3-1: SETTINGS: USER SELECTION ...47
FIGURE 3-2: SETTINGS: CONNECTION EXPERT ...48
FIGURE 3-3: SETTINGS: CONNECTION NOVICE ..48
FIGURE 3-4: SETTINGS: QOS CATEGORY EXPERT ...49
FIGURE 3-5: SETTINGS: QOS CATEGORY NOVICE..49
FIGURE 3-6: QOS PROFILE MEDIAZINE ..50
FIGURE 3-7: SETTINGS: ALL QOS CAT . EXP . USER..51
FIGURE 3-8: APPLICATION PROFILE REALPLAYER ...52

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 6 of 99

FIGURE 3-9: CORRELATION BETWEEN QOS PROFILE AND APPLICATION PROFILE..53

Table of Tables

TABLE 2-1: TYPICAL SCENARIO FOR THE USAGE OF THE EAT API..19
TABLE 2-2: TRAFFIC DESCRIPTOR AND POSSIBLE VALUES..33
TABLE 3-1: MEDIAZINE CONNECTION SETTINGS ...48
TABLE 3-2: MEDIAZINE QOS CATEGORY SETTINGS ..49
TABLE 3-3: RECOMMENDATIONS FOR MEDIAZINE USERS..54

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 7 of 99

1 Introduction

This deliverable gives an overview of the application and end-user interfaces the EAT offers in the
second AQUILA trial.

The purpose of these interfaces is:

• To support the developers of new QoS-aware applications and services by providing an Appli-
cation Programming Interface (API) on the top of the EAT which is a QoS middleware between
applications and the (AQUILA) network.

• To support the users of existing, QoS-unaware legacy applications by providing Graphical User
Interfaces (GUIs) for manual QoS requests in different usage modes. Since the most users might
be not familiar with AQUILA, the flexible approach of predefined Application Profiles is used to
allow a mapping between user’s QoS understanding and the technical details of AQUILA QoS
reservation requests.

• To support some special applications based on dynamic signalling protocols by providing trans-
parent Proxies (Gateways), which collect important information directly from application’s traffic
in order to use them for reservation requests.

• To support also automatic tests and measurements by providing a script interface for the batch
processing of QoS requests.

By offering all these different interfaces towards various, legacy and new applications, services as
well as real end-users, the EAT aims to be a powerful and flexible QoS portal towards the Resource
Control Layer. For legacy applications, this has already been proved in the first trial. The second
trial, moreover, will show how the EAT can be applied by QoS offering Complex Internet Services,
for example.

The deliverable is structured as follows:

After the description of the overall approach useful for getting familiar with the EAT, the following
chapter 2 describes the several, above mentioned application interfaces in more detail. The reader
may select only one chapter he/she is interested in. Note that the chapters focus mainly on the func-
tionality the interfaces offer.

More impressive scenarios on how to use them are given in chapter 3 which is split into two parts:
one for the usage of Basic Internet Applications, and the other showing how Complex Internet Ser-
vices can benefit from QoS.

After that, a short installation and configuration guide of the EAT is given in chapter 4.

The document ends with an Appendix containing detailed interface specifications, examples, etc.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 8 of 99

2 Application Interfaces

2.1 Approach

The End-user Application Toolkit for the second trial supports two major kinds of (Internet) applica-
tions:

• Legacy Applications [D1201] that are in fact QoS-unaware and that cannot be modified in order
to directly access the EAT or any other QoS infrastructure. The most of existing Internet
applications are legacy ones. The EAT prototype for the first trial already supported a set of
them.

• QoS-aware Applications [D1201] that can themselves request for QoS, by using an API, for
example (EAT-based Applications use the EAT API), or by using signalling protocols such as
RSVP and SIP.

Internet applications, however, have also to be distinguished with regard to their complexity. In
AQUILA, we make a distinction between Basic Internet Applications and Complex Internet Ser-
vices [D1202]. They have to be supported in different ways: Whereas Basic Internet Applications
are often legacy ones which cannot directly use the EAT, Complex Internet Services can be QoS-
aware or even EAT-based although they consist of basic applications. It is one of the aims of the
second trial, to demonstrate this feature as it is described in this document.

Generally, the EAT provides – at the control plane – a set of application interfaces in order to sup-
port the wide range of different applications (Figure 2-1):

• Legacy applications do not interact with the EAT. QoS reservations must therefore be made
manually (see below).

• For some specific legacy applications that dynamically negotiate data port numbers, a special
Proxy (Protocol Gateway) (e.g. for H.323) detects the for an AQUILA reservation request nec-
essary information from the application’s data flow [D2201].

• For applications that rely on signalling protocols, Protocol Gateways (Proxies) are provided that
interpret protocol messages and map them to AQUILA reservation requests. For the second
trial, a SIP Proxy will be realised. However, the Proxy Framework is flexible and extensible in
order to include additional Proxies (e.g. for RSVP) later on. (More details can be found in chap-
ter 2.5.)

• For EAT-based applications, a special Application Programming Interface (API) provides inter-
faces and methods for login, reservation requests and releases, etc. This proprietary API is ac-
cessible via CORBA and provides the full AQUILA functionality. (More details can be found in
chapter 2.2.)

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 9 of 99

Figure 2-1: The different application interfaces of the EAT

Due to the fact that the EAT is fully transparent for legacy applications – even if they are supported
by a Proxy – QoS reservations must be performed in a different way. For that reason, the EAT pro-
vides a set of graphical user interfaces in form of Web pages, in which an end-user can manually
request for QoS reservations (Figure 2-2). Moreover, the so-called AQUILA Portal offers among
other things two different reservation modes: an advanced one for end-users that have knowledge
about the technical details of an AQUILA request, and a regular one for end-users that are not famil-
iar with AQUILA. (More details can be found in the chapter 2.3.)

In order to support the regular reservation mode, an additional application “interface” is provided,
the so-called Application Profile methodology [D2202]. Application Profiles contain reservation
“schemes” with technical parameters mapped to well understandable QoS metaphors. (More details
can be found in the chapter 2.4)

Note that the regular reservation mode is not necessarily part of the AQUILA Portal. In fact, Appli-
cation Profiles are usable via the EAT API and can therefore be called by every Complex Internet
Service that wants to make use of the AQUILA’s QoS capabilities. In that way, such an Internet
service may offer its own regular reservation mode, by showing the QoS metaphors from the proper
Application Profiles of its basic applications/plug-ins.

Edge
Router
Edge

Router

EAT

EAT APIEAT API

ApplicationsApplications

Legacy
Application

Legacy
Application

EAT-based
Application
EAT-based
Application

RSVP
Application

RSVP
Application

SIP
Application

SIP
Application

Base
Proxy
Base
Proxy Legacy App

(e.g. H.323)
Proxy

Legacy App
(e.g. H.323)

Proxy
RSVP
Proxy
RSVP
Proxy

SIP
Proxy
SIP

Proxy

Data
plane

Control
plane

R
S

V
P

SI
P

C
O

R
B

A

...

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 10 of 99

Figure 2-2: Application and user interfaces of the EAT

2.2 EAT API

2.2.1 Description of Functionality

The EAT API, in general, provides as set of CORBA interfaces and supporting data types towards
applications and services in order to allow them the access to the AQUILA’s network services and
reservations.

This chapter gives an overview on the available interfaces, operations, structure types, and attributes.
Moreover, instructions are given on how to use them. (The full interface specification is given in IDL
in the Appendix.)

The following first UML class diagram depicts the API model with the most important interfaces and
classes that belongs to users and reservations1. A detailed description follows.

1 For all types and interfaces, please, see the api.idl in the Appendix.

Edge
Router
Edge

Router

EAT

EAT APIEAT API

ApplicationsApplications

Legacy
Application

Legacy
Application

EAT-based
Application
EAT-based
Application

RSVP
Application

RSVP
Application

SIP
Application

SIP
Application

Base
Proxy
Base
Proxy Legacy App

(e.g. H.323)
Proxy

Legacy App
(e.g. H.323)

Proxy
RSVP
Proxy
RSVP
Proxy

SIP
Proxy
SIP

Proxy

Data
plane

Control
plane

R
S

V
P

AQUILA PortalAQUILA Portal

Usual
Reservation
Mode

Usual
Reservation
Mode

Advanced
Reservation
Mode

Advanced
Reservation
Mode

SI
P

C
O

R
B

A

...

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 11 of 99

Figure 2-3: The EAT API (1)

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 12 of 99

Description:

The interface Login is implemented by a singleton object, to be used by all clients of this EAT (see
paragraph 2.2.2). It provides:

• The loginClient() operation with two parameters: the login information (including user ac-
count and password) and an optional session id of the client (usually a web session id).
loginClient() returns – if successful – the reference to an object of the interface type
QoSSessionRequest which belongs to the now logged end-user. If an end-user severally
logs in at the same time, he/she always gets the same reference. If something goes wrong with the
login, an APIException is raised including a string with the reason.

• The getQSRequestMeansSessionId() operation with one parameter: the client session
id of a previous call of the loginClient() operation. By using this id, it is possible to associ-
ate and return the reference to the belonging QoSSessionRequest object without to login
once again. That is useful if a (web) client is not able to store the reference it gets from the previ-
ous call.

The interface QoSSessionRequest is the main user agent for a QoS requesting client. For each
logged end-user exactly one object exists that implements this interface. It offers the following:

• Three readable attributes: The account name of the logged user, its contracts (namely its SLAs),
and the associated client session ids (at most five).

• The advancedRequest() operation with two parameters: the request spec of the type
AdvancedSpec including for example network service id and SLS, and the optional requester
(see interface EventObserver), usually the requesting client. If a reservation can be estab-
lished, the operation returns the reference to a new object of the interface type
QoSSessionUnit containing one single reservation/session element (e.g. for a unidirectional
reservation). Otherwise, an APIException is raised.

• The advancedMultipleRequest() operation. Instead of requesting a single, unidirectional
reservation, a multiple (e.g. a bi-directional) reservation is requested. The request parameters
can only differ from the requested services and the service level specifications. An inseparable
QoSSessionUnit is created and returned, containing as many single elements as requested
(e.g. two for a bi-directional reservation).

• The advancedGroupRequest() operation for different reservation requests within a group,
for example for several service components per application, or for several applications per
Complex Internet Service. A QoSSessionGroup is created and returned. (The group may get
its own group name.)

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 13 of 99

• The prepareSessionCharacteristicsOptions() requests for the available QoS
options for a reservation in the regular mode in order to present them to the end-user. The only
parameter indicates which Application Profile is to be used for that (see interface
ApplicationManager).

• The regularRequest() operation with again two parameters: one of the type
RegularSpec including for example the Application Profile, one service component and the
chosen QoS option, and one for the requester. A QoSSessionUnit is created and returned.

• The regularMultipleRequest() operation like above but for multiple reservations (see
advancedMultipleRequest()). The single reservation elements can only differ from the
flow specs and scopes, for example regarding the source and destination addresses.

• The regularGroupRequest() operation for multiple groups, for example for the different
service components of one application.

• The createEmptyGroup() operation to establish an empty QoSSessionGroup, option-
ally with a meaningful name.

• The getActiveQoSSessions() operation to return all active sessions (groups and units) of
this client/end-user.

• The getQoSSessionUnits() operation to get all active session units of this client/user in a
uni-dimensional array.

• The retrieveReservationHistory() operation to have a full list of all accepted former
and actual reservations including their parameters and accounting information.

• The close() operation with the client session id as the only parameter, in order to de-
associate a client (web) session from this object.

• The logout() operation to log off the end-user and to release all of his/her reservations (in
contrast to Login.close()).

The interface QoSSession will not directly be implemented but is to abstract from its children
QoSSessionGroup and QoSSessionUnit, and to have a common return type. Nevertheless,
it provides the following attributes and abstract operations:

• Four attributes: sessionId as the unique session identifier, isGroup to indicate whether the
session is a group or a unit, group to refer to the aggregating group if one exists, and
requester to refer to the optional requesting client.

• The release() operation to release this session (unit or group) including all of its elements
(groups, units, and/or single elements). Accounting data are automatically requested and stored
within the EAT.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 14 of 99

• The suspend() operation to cancel either this session (unit or group) without storing any ac-
counting data.

The interface QoSSessionGroup as specialisation of QoSSession. It is for reservation groups
which have the purpose to be better “manageable” than many separate reservations (e.g. to suspend
the whole group). The interface provides the following features:

• The attribute groupName to show the purpose of the group.

• The attribute sessions to refer to the member QoSSessions of this group. Thus, these can
either be QoSSessionUnits or again QoSSessionsGroups.

• The getSession() operation with one parameter: the id of a member session. It returns the
reference to this object.

• The join() operation with one parameter: the reference to an already established session unit
or group in order to include it into this group. By using this, multidimensional groups can be built.

• The leave() operation with the same parameter in order to quit the membership of the
belonging session unit or group in this higher-level group.

• The leaveAll() operation to quit the membership of all session units or groups of this higher-
level group. After that, this group can be released without releasing its members.

The interface QoSSessionUnit provides access to an inseparable reservation unit consisting of
one ore more reservation elements. Therefore, the features are:

• The attributes isMultiple and numberOfElements. The first flag indicates whether the
session unit is a multiple one, the second attribute gives the number of the reservation elements.

• The attribute status containing the session status. It can be Provisional (waiting for the
Proxy information), Active (established in the ACA but not in the edge router), or Enabled
(established also in the edge router).

• A list of attributes that belong to this session unit, e.g. the requested services and SLS.

• The reference selection to the chosen, unique QoSOption of this unit if one.
(QoSSession contains the optionId of a specific serviceComponent.)

• The getAccountingInformation() operation to explicitly ask for the last accounting
status. Note, that the accounting data are automatically requested and stored when the reserva-
tion is released.

• The enable() operation to establish an already activated session also in the edge router reser-
vation.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 15 of 99

The interface EventObserver should be implemented by a client that wants to be informed when
something happens with the reservation. For example, a reservation request that relies on the support
of a Proxy results in a session which is still provisional until the Proxy notifies the EAT that the res-
ervation can really be activated:

• The notity() operation in this case informs the requesting client about this event, which is of
the type RequestEvent. And due to the fact that the reservation request towards the net-
work can fail even if it is provisionally established within the EAT, the requester is informed
about the success of the request (Accepted or Rejected). Another important event occurs,
when an already established reservation is automatically Released if the connection to the
network fails. For that reason, RequestEvent contains one of these three kinds of events as
well as the id of the belonging QoSSession and an optional string for more details on the rea-
son.

The following second part of the API model depicts other supporting classes and interfaces:

Figure 2-4: The EAT API (2)

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 16 of 99

Description:

The interface ServiceDistributor implemented by a singleton object provides access to the
existing network services:

• The getNetworkServices() operation returns an array of information about the available
network services including their ids and full names.

• The getNetworkService() operation returns one specific network service, including the
information about its QoSSpec as well as the possible reservation styles.

The interface ApplicationManager also implemented by a singleton object is for the retrieval of
the existing Application Profiles and the installed Proxies:

• The getAvailableApps() operation returns an array of ApplicationInformation,
namely the identifiers of the profiles as well as the names, the versions, and optionally the build
numbers of the applications for which profiles exist. It is for the regular reservation mode.

• The getAvailableSCs() operation returns an array of the ServiceComponentInfor-
mation of one app profile. Included are information about the available QoS options (SCOp-
tion), their SessionCharacteristics, and their Semantical descriptions. It is also
for the regular reservation mode.

• The getApplicationProfile() operation returns the reference to a specific, entire Ex-
tApplicationProfile object, which represents the whole XML data of an app profile.

• The getProfileStream() operation returns the XML data of a specific app profile as byte
stream. By using this function, a client can internally parse the XML data in order to retrieve spe-
cific profile information.

• The getApplicationProxies() operation returns an array of the installed application
Proxies containing in ProxyDescription their ids, names, etc. It is mainly for the advanced
reservation mode (in order to select a Proxy) but also for the regular mode (in order to check the
availability of the Proxy specified in the Application Profile).

2.2.2 Usage Scenario

A. How to access the CORBA API

The EAT API is a CORBA one specified in IDL and using the JDK 1.3 ORB. In order to get ac-
cess to it, you have to do the following first:

1. If available, read the property file (e.g. aquila.rc) including the basic ORB parameters: “ORBIni-
tialHost” and “ORBInitialPort”. Otherwise these parameters are required at the command
prompt when your start your client.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 17 of 99

2. Initialise the ORB with these parameters.

3. Narrow the naming service called “NameService” and get the reference to it.

4. Create the initial name context “aquila.rcl” and retrieve the reference to it.

5. Get the name of the EAT from the client’s command line.

6. Narrow the following singleton objects and get references to them:

- Login

- ServiceDistributor

- ApplicationManager

B. How to use the API

After getting the reference to the Login object, a typical scenario is the following:

Step Operation

1 Login. Login.loginClient()

1a Get the reference to your QoSSession-
Request agent either directly or via

Login.getQSRequestMeansSessionId()

2 Retrieve information on the existing
network services, …

ServiceDistributor.getNetworkServices()
ServiceDistributor.getNetworkService()

 … on the installed Proxies, … ApplicationManager.
getApplicationProxies()

 … and on the available apps. ApplicationManager.getAvailableApps()
ApplicationManager.getAvailableSCs() ..

3 Get the SLAs QoSSessionRequest.contracts()

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 18 of 99

4a Request in the advanced reservation
mode for a single reservation (unit), …

QoSSessionRequest.advancedRequest()

 … for a multiple reservation unit, … QoSSessionRequest.
advancedMultipleRequest()

 … or for a reservation group. QoSSessionRequest.advancedGroupRequest()

4b Prepare the options for the regular res-
ervation mode.

QoSSessionRequest.
prepareSessionCharacteristicsOptions()

 Request for a single reservation for one
service component of the app, …

QoSSessionRequest.regularRequest()

 … for a multiple reservation unit, … QoSSessionRequest.
regularMultipleRequest()

 … or for a reservation group. QoSSessionRequest.regularGroupRequest()

4c Get the reference to the established
reservation session(s) either directly or
via

QoSSessionRequest.getActiveQoSSessions()

5 If a Proxy is required for the above res-
ervation request, be prepared to receive
an “accepted” or “rejected” event.

ß EventObserver.notify()

6 Create an empty reservation group. QoSSessionGroup.creatyEmptyGroup()

7 Perhaps join an already established ses-
sion to a group, …

QoSSessionGroup.join()

 … or leave from it. QoSSessionGroup.leave()

8 Perhaps retrieve the accounting data of
a single reservation (unit).

QoSSessionUnit.
getAccountingInformation()

9 Release a reservation group without
releasing its members.

QoSSessionGroup.leaveAll();
QoSSessionGroup.release()

10a Release a reservation unit or group. QoSSession.release()

10b Or just suspend (cancel) it. QoSSession.suspend()

10a Close the client’s session (without re-
leasing any reservations).

QoSSessionRequest.close()

10b Or hardly logout (with releasing all your
reservations).

QoSSessionRequest.logout()

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 19 of 99

Table 2-1: Typical scenario for the usage of the EAT API

Note that many of the operations above can raise exceptions of the type APIException. You
have to catch them. For more details, please, see the example in the Appendix of this document.

2.3 Graphical User Interfaces – The AQUILA Portal

Taking into account the classification of the applications supported by the EAT (see chapter 2.1), the
AQUILA Portal (portal) provides a set of graphical user interfaces (GUI) to allow the end-users to
interact with the EAT, in order to ask for QoS reservations on behalf of legacy applications. In other
words, the end-user is responsible to manually set-up and release reservations for such an applica-
tion, asynchronously to the application.

The GUI has the form of Web pages, so the only software program the user has to install is one of
the standard Web browsers. The user has also to be provided with the URL of the portal’s first
page, which will be something like: http://<portal-host>/AQUILA.jsp. Navigation among the por-
tal’s GUI pages is performed automatically, so the user does not have to know any other URLs.

In a few words, the following scenario is foreseen: the user first performs a login operation, so that
the EAT can authenticate the user. If the login operation is successful, the user can interact with the
portal to perform reservations and releases of established reservations, or to manipulate the active
reservations into groups. At the end, the user can perform a logout operation. The actual intended
application could be launched just after (or before) the user has placed a reservation.

The portal is intended for people that are “regular” users (AQUILA inexperienced users) without
knowledge of technical QoS issues, as well as for computer or network professionals (AQUILA
experienced users) that may have deep knowledge of the QoS requirements of the application they
use, develop and test, as well as of the corresponding network mechanisms. So, the portal offers
two basic reservation modes: a Regular one for the former kind of users, and an Advanced one for
the latter.

2.3.1 Login

The first operation to be performed before a user can use the portal is the “login” operation. This
operation performs user authentication with parameters the user’s login-name and the password. So
the portal’s first page offers two fields that the user has to fill in: the ‘Login’ field and the ‘Password’
field.

After successful authentication, the user can perform all the other operations offered by the EAT.
Moreover, in order to forbid the direct loading of a GUI page without the user to be authenticated,
the EAT always checks whether the user is logged in or not. In case the user has not logged in, the
portal notifies the user and proposes to load the login page.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 20 of 99

If the authentication fails, the portal loads a similar page with the Login and Password fields, notifying
the user that the authentication has failed.

The login page is the first page to be displayed when a user connects to the AQUILA Portal and is
shown in Figure 2-5.

Figure 2-5 The Login GUI

2.3.2 Advanced and Regular Reservation Requests

It was mentioned before that the portal supports both regular users as well as advanced ones, by
providing the reservation GUI in two modes: a regular one and an advanced one. These modes are
discussed below.

2.3.2.1 Regular Reservation GUI

The Regular Reservation mode facilitates the placement of a reservation request, by exploiting the
existence of some technical developments within the EAT, that are the Application Profiles and the
Converter2. The fundamental point is that the Regular Reservation has the knowledge about specific
session characteristics that are comprehensible by a regular user.

2 The Converter is a logical component of the EAT that calculates QoS reservation parameters by using the Ap-
plication Profiles.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 21 of 99

The EAT has defined these technical mechanisms in such a way that an Application Profile can be
constructed and stored in the persistence layer of the EAT. The stored Application Profiles give a
clue to the EAT about which applications are currently available in this mode. So, the first operation
to be performed when the user selects the Regular Reservation GUI is to display the menu of the
available applications (see Figure 2-6).

Figure 2-6: The menu of the available applications

After the user has selected the desired application, the specific GUI is constructed and displayed,
presenting to the user the available Options for the selected application (see Figure 2-7).

The application may consist of more than one component, e.g. a multimedia application usually has
an audio session, a video session, and (more than one) data sessions. The GUI page will contain all
the available options for each component separately. This enables the users to perform reservations
only for one, some or all the components, according to their requirements. presents an example page
for the NetMeeting application, which gives options for two components: Audio and Video. There
are actually three QoS options for both the Audio component and the Video component.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 22 of 99

Figure 2-7: The Regular Reservation GUI

All options are constructed of session characteristics that are comprehensible to the “regular” user.
As an example, the session characteristics for Video are ‘Video Quality’, ‘Window Size’, and
‘Network Speed’. Each session characteristic is described by a qualifier that identifies the actual
offering of this session characteristic for each option. The qualifiers for the ‘Video Quality’ session
description are ‘very low’, ‘medium’, and ‘high’.

The potential combinations of session characteristics and the defined qualifiers could form an arbi-
trary large number of options. However, the EAT supports only the options that are defined within
the Application Profile, and only these options are actually presented in the Regular Reservation GUI
page.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 23 of 99

The user has also to fill in two important sets of information about the application, which are the
‘Source’ parameters and the ‘Destination’ parameters. These connection parameters refer to the
networking parameters of the application, such as the IP addresses and ports that are going to be
used for the sessions (more details in the next section about the Advanced GUI). The EAT may
know a priori these parameters (specified explicitly within the Application Profile) or may depend on
the use of a Proxy (see section 2.5 for details). So, most probably, the user will not have to manually
provide these parameters. Otherwise, the user has to be aware or able to find them out.

The user after selecting the desired options and filling in the necessary parameters submits the reser-
vation to the EAT. The result of the reservation is presented in the user. In case of an unsuccessful
reservation, the EAT notifies the user about the error, saying explicitly which is(are) the false pa-
rameter(s).

The GUI also contains some fields and selections that correspond to the Reservation Groups. These
are described later in the Active Reservations GUI section.

2.3.2.2 Advanced Reservation GUI

The Advanced Reservation GUI displays a full list of the reservation request parameters that have to
be filled in directly by the “advanced” user (see Figure 2-8). The displayed form essentially presents
all the contents of the reservation request message to be sent from the EAT to the ACA [D1201].
The construction of the Web page therefore directly depends on the AQUILA implementation (e.g.
the specific parameters of the Traffic Spec).

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 24 of 99

Figure 2-8: The Advanced Reservation GUI

The user has to fill in the following info:

• Application Identifiers : the application identifiers are not used internally by the EAT, so they
have only meaning for the user. They are used at the Release GUI to inform the user about the
active reservations that can be released. The application identifiers are:

o Application Name: The indicative name of the application. The user can choose what-
ever name for the reservation; even this does not correspond to the real one.

o Service Component: The user has to select one of the choices in the provided list-box.
This parameter is used to identify different components within the same application, again
for illustration purposes only.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 25 of 99

• Network Service: This part of the page is constructed dynamically according to the service of-
fered by the network. The figure shows the currently defined network services, which are Pre-
mium CBR, Premium VBR, Premium Multimedia, and Premium Mission Critical. The user is al-
lowed to select only one of them.

• The Service Level Specification: this is defined in [D1201] and consists of the following pa-
rameters:

o Scope (Point-to-point, point-to-any, point-to-many, any-to-point). The selected Scope
has to match with the selected Network Service (checked upon submission of the re-
quest).

o Connection identifiers : These are the network connection parameters (similar to the
Regular reservation case) and consist of the fields for: the ‘IP Address’, the ‘NetMask’,
the ‘Lower Port’ and ‘Upper Port’ numbers for both the Source and Destination sides.
The Lower Port is mandatory to be specified. If the user specifies also the Upper Port,
the EAT will make the reservation for all ports greater than or equal to the lower port up
to the upper port (included). Alternatively to specifying the port numbers, the user can
select one of the available Proxies (from the ‘Proxy’ list-box) to let the system detect
these parameters. There is also a “bi-directional” reservation check-box, which has the
meaning that when ticked (selected), the EAT will perform the reservation in both direc-
tions from source to destination as well from destination to source (with the same reser-
vation parameters).

o Traffic Specification: It consists of the traffic conditioning parameters like Peak Rate
(PR), Bucket Size for PR, Sustainable Rate (SR), Bucket Size for SR, Minimum policed
unit, Maximum Packet size, Expected average rate, 1st threshold for Bilevel, 2nd thresh-
old for Bilevel3. The units for each parameter are also presented, to facilitate the user to
fill in the field with the correct value.

o Service Schedule: the schedule has to do with the timing schedule for this reservation
and is included in the GUI mainly to facilitate the placement of a reservation much before
the actual service time. It consists of the ‘Start Time’, ‘Duration’, ‘Idle’ and ‘Cycles’
fields. These fields are only optionally filled-in, and in case they are empty, the reserva-
tion is accomplished with the notion ‘from now on until explicitly released’.

The user after filling in all the appropriate parameters can submit the reservation. The parameters are
going to be validated at two levels (the EAT and the ACA) and if the reservation is successful the
portal will indicate it to the user. In case of false validation, the portal will display the same Reserva-
tion page with the system-provided error message on the top of the page, as well as some specific
error messages on top of each field, where the error(s) is(are) located. The previously entered pa-

3 Some of these parameters are not really used within the EAT, but are left in the GUI for illustration purposes.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 26 of 99

rameters are not lost, but displayed again in order for the user to be able to correct or delete them,
or add new ones according to the error message.

2.3.3 Active Reservations

The Active Reservations GUI provides the opportunity to the user to see and manipulate the active
reservations. In a few words, the user can release reservations, or organise them in groups. The EAT
supports the concept of Reservation Units and Reservation Groups. Reservation units refer to single
reservations or to a set of reservations that will be treated as a single reservation (e.g. a bi-directional
reservation). The reservation groups are used to collect a set of units or groups under one logical
group.

The Active Reservations GUI presents in two parallel panels the active reservation units and groups.
In the left panel, all the units which do not belong to a group are shown. In the right panel the internal
units/groups of all reservation groups are presented. The GUI provides functionality for a user to:

• Release a reservation unit or a reservation group: The user can select one, more or all
units/groups and release them. Releasing a group means that all aggregated members (i.e. the
reservation elements of the units, and the units and groups of the groups, resp.) are released.

• Create a group: The user can create a new group to later join units or other groups into it.

• Join reservation units or groups into a group: The user can select a unit or a group and join it into
another group. A group can be a sub-group of only one group.

• Leave a group: The user can select a group member (either a unit or a group) and cancel its
membership. Leaving a group means that the former member is not longer member of any group.

Having in mind the two reservation request modes of the portal (regular and advanced), the Regular
Reservation mode inherently support reservation units and groups, because the user selects the de-
sired QoS for all sessions of this application. The Regular Reservation GUI will automatically create
a group joining the single reservation units for the different service components of one application,
and submit the grouped reservation to the ACA. Considering the NetMeeting example of Figure
2-7, the result of this request is a ‘NetMeeting’ group with two reservation units (Video and Audio).
In the Regular Reservation GUI there is also a ‘bi-directional’ check-box which will make both res-
ervations from the source to the destination and from the destination to the source, with the same
QoS parameters. In this case, both above mentioned reservation units contain two reservation ele-
ments for each direction.

In the Advanced Reservation mode, the scenario is somehow different, because the user is not able
to specify all reservations at once, but one at a time. So, reservations created in the Advanced Res-
ervation mode are always submitted as individual reservations (units). The user can however later
create a new group and join any of those reservations into it. The Advanced Reservation GUI how-

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 27 of 99

ever contains also a ‘bi-directional’ check-box, which has the same usage and effect as that of the
Regular Reservation GUI.

As an example, an instance of the Active Reservation GUI could be that of Figure 2-9. We can see
that the user has created two groups with names ‘Download’ (empty) and ‘NetMeeting’. ‘Net-
Meeting’ has two reservation units (‘Audio’ and ‘Video’). Finally, there are two reservation units
with the name ‘VoIP’ and ‘FTP’, which are not member of any group. (The ‘VoIP’ unit could be a
bundle of two bi-directional reservations also.)

Figure 2-9: The Active Reservations GUI

The operations that can be performed having this instance of the Active Reservations GUI in mind
are the following:

• Select the ‘VoIP’ or ‘FTP’ reservation unit and ‘Join’ it to any of the two groups.

• Select the ‘Download’ group and ‘Join’ it to the ‘NetMeeting’ group (or vice versa).

• Select any of the group members (units or groups) and let them ‘Leave’ from its group.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 28 of 99

• Select any of the single reservations (units) or reservation groups and ‘Release’ them. Releasing
the ‘NetMeeting’ group would result in the release of the ‘NetMeeting Video’ and ‘NetMeeting
Audio’ units.

• Create a new (empty) group, by filling in the ‘Group Name’ edit box with the wanted name for
the new group, and then pressing ‘Create’.

2.3.4 Logout

The user may perform the “logout” operation at any time. The Logout GUI contains two buttons.
The user can logout either with or without releasing all its reservations.

The concept of logging out without releasing the active reservations can be understood in the follow-
ing scenarios. Suppose that the reservation is placed from a third-person (an administrator) on behalf
of the actual users for a videoconference. The third-person, after making the reservation, can logout
from the portal, but still enable the participants to continue with the QoS provisioned session. An-
other scenario is when a user has made a reservation for a big file download. If the user wants to
leave the PC for a while during the download, he/she can logout without releasing to make sure that
no other user will release, accidentally or not, the reservation.

2.3.5 Navigation/Appearance

Although the design and development of the portal focus on the functionality and its correct opera-
tion, we also followed some basic rules that contribute to the navigability and appearance of the por-
tal. Navigation is supported by the existence of two frames, one for the menu and the other for the
actual GUIs. The upper frame contains the main menu, from which the user can navigate through the
various GUIs, which open in the lower frame.

2.4 Application Profiles

2.4.1 Definition Application Profiles

As application development is out of the scope of the AQUILA project, we need a mechanism to
support existing legacy application. Legacy applications are not QoS aware. They are neither able to
offer QoS to end-users nor to request for QoS on their own. The EAT and the converter provide
mechanisms for offering and requesting QoS for legacy applications and therefore use the Applica-
tion Profiles. Application Profiles are the mean to QoS enable legacy applications. With Application
Profiles and their specifications it is possible in a first step, to offer QoS and to request for QoS from
a QoS portal independently from the legacy applications. In the future it is conceivable to use Appli-
cation Profiles to specify new QoS aware applications (where the QoS offer and request are inte-
grated in the application itself).

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 29 of 99

Complex Internet ServiceComplex Internet Service

EAT ManagerEAT Manager

RCLRCL

Converter &
Application Profiles

Converter &
Application Profiles

QoS APIQoS API

GUIGUI Basic Internet
Applications

Basic Internet
Applications

Protocol GatewaysProtocol Gateways

+

Figure 2-10 : Example of the architecture in the complex Internet service scenario show-
ing the combination of non-QoS aware Basic Internet Applications and Application Pro-

files

The Application Profiles provide the whole necessary data about legacy application for these mecha-
nisms to work properly.

The aim of the Application Profile is to specify as much as possible an application at network, appli-
cation and end-user level. An Application Profile should provide a universal description of applica-
tions at these three levels independently from network operations. An Application Profile should
provide a general description of the QoS request toward a network at application level (how does
the produced traffic looks like – traffic specification, how are the QoS requirements – QoS Specifi-
cation, what can an end-user sets up that have an implication on the QoS request – Session charac-
teristic specification, NS Specification).

The converter is able to convert a neutral application QoS request based on the profile into a pro-
prietary (AQUILA for example) QoS request. The EAT provides a neutral QoS API for Internet
services or future application developers based on the Application Profiles.

Application Profiles provide:

• Specification at application level (in term of a DTD) of

? End-user oriented information: session characteristics

? QoS requirements

• Specification of legacy application at network level (in term of a DTD) of

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 30 of 99

? Network and technical oriented information: technical characteristics

? Codecs

• Concrete legacy application information (in term of XML files)

? Predefinition of session characteristics sets in order to keep the offer at end-user level con-
sistent. Each application component is only described once.

? Predefinition of QoS requirement sets. All applications of a same type have the same QoS
requirements.

? Technical characteristic sets

2.4.2 Specification of Application Profiles at Application Level

At application level it is possible to find common descriptors that can be specified. Concrete applica-
tions (for example NetMeeting from Microsoft) at high level can be assigned to an application type
(for example video conferencing tool). As suggested by the accountability knowledge level pattern
it is possible for the description of applications to differentiate between a knowledge level – the
specification level, and an operational level – concrete application. An application type itself can be
as well described at high level by so called service component types (for example video, voice,
data etc.). Each service component type has common QoS requirements toward the network func-
tion of throughput, delay, jitter, loss and error that can be specified. In the same way a service com-
ponent has common user friendly descriptions the session characteristics.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 31 of 99

Party
Party
type

Accountability
type

1 1

1..*

1..*

11

1..*

1..*

0..*

0..*

0..* 1..*Application

ServiceComponent

ApplicationType

ServiceComponentType

QoSRequirementSpecification

SessionCharacteristicSpecification

1..*

Accountability
knowledge
level

Operational
level

Knowledge
level

QoSRequirement

SessionCharacteristic

1..*

Figure 2-11: Application analysis diagram and the accountability knowledge level pattern

2.4.3 Specification of Application Profiles at Network Level

The description and specification of application features is at network level not a trivial task, and
cannot be systematically achieved.

The following UML diagram opposes the systematic description of application (in white) to the un-
systematic (in grey) one.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 32 of 99

Figure 2-12: Analysis UML class diagram of the application at application and network
level

The produced complex traffic flows do not depend on general application types but on the concrete
implementation issues and strategies. The implementation of the codecs used is relevant for the de-
scription of the traffic produced. Table 2-2 depicts parameters at different levels (like traffic type,
connection rate, living time, bit rate, micro-flows, and packet size) that can vary from stream traffic
to elastic traffic, or from bursty traffic to constant traffic, and describe traffic flows.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 33 of 99

Factor Alternative 1 Alternative 2
Traffic type Stream: time integrity preservation Elastic: loose time requirements
Burstiness Bursty constant
Connection rate High rate Low rate
Living time Long Short
Bit rate Constant bit rate Variable bit rate
Microflows Multiple Single
Packet size large small

Table 2-2: Traffic descriptor and possible values

To be competitive and usable codecs have to cope with the actual best effort network, and respect
as much as they can the QoS requirements (like delay / latency control, bandwidth minimisation) of
application types. Therefore they implement different mechanisms. For example, for bandwidth
minimisation [Codecs] a solution in employing a variable bit rate transmission corresponding to a
non-constant representation of the data (in the case of voice this can be silence suppression, or opti-
misation of the compression bit stream). These solutions are an obstacle when it comes to describe
or specify the out coming traffic.

The Application Profiles concentrate in a first step on non-adaptive codecs.

The Application Profiles refer to Service Component Profiles, mainly because many applications
have several service components (e.g. for video, audio, and data) with different QoS requirements.

2.4.4 Utilisation

The Application Profiles are specified with DTDs / XML Schemas (see Appendix). In a first step the
developer creating the Application Profile has to collect the information concerning the application
itself, namely name, version, build, type, and scope. In a second step he/she has to collect the infor-
mation concerning the implementation, namely: the service components involved, the transport proto-
col, and the other protocols. (It is also necessary to create a profile for each service component.)
Concerning the implemented protocols the developer has to find out information concerning the port
used (upper port number, lower port number, control port, etc.).

The developer has to provide the information marked in grey.

<!ELEMENT ApplicationProfile (Implementation+, protocol*)>
<!ATTLIST ApplicationProfile
 name CDATA #REQUIRED
 version CDATA #REQUIRED
 build CDATA #IMPLIED
 type (VoIP | MULTIMEDIA | STREAMINGVIDEO | STREAMINGAUDIO | STREAMING
 | GAME | OTHER) #REQUIRED
 scope (unidirectional | bidirectional | p2p |
 xdirectional) #REQUIRED
>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 34 of 99

<!ELEMENT Implementation (ServiceComponent,TransportProtocol*)>
 <!ELEMENT ServiceComponent (name, optionID*)>
 <!ATTLIST ServiceComponent
 file CDATA #REQUIRED
 >
 <!ELEMENT optionID (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT TransportProtocol (lowerPortNo?,upperPortNo?)>
 <!ATTLIST TransportProtocol
 name (UNSPECIFIED | TCP | UDP) "TCP"
 >
<!ELEMENT protocol (lowerPortNo?,upperPortNo?,isControlPort?)>
<!ATTLIST protocol
 name (UNSPECIFIED | RTP | RTSP | RSVP | SIP | SDP | H320 | H321 |
 H322 | H323 | H324) "H323"
>
 <!ELEMENT isControlPort (#PCDATA)>
 <!ATTLIST isControlPort
 value (true | false) "false"
 >

<!ELEMENT lowerPortNo (#PCDATA)>
<!ATTLIST lowerPortNo
 value (fixed | configurable) "fixed"
>
<!ELEMENT upperPortNo (#PCDATA)>
<!ATTLIST upperPortNo
 value (fixed | configurable) "fixed"
>

Concerning the preparation of the Service Component Profiles. Some parts can be reused from al-
ready defined profile templates for codecs (like session characteristics, QoS requirements), other
have to be manually investigated and filled in (like traffic information) carefully.

2.5 Proxies

Applications, especially multimedia ones, usually open data connections with the use of connection
setup protocols. Example protocols are the Session Initiation Protocol (SIP) [SIP] and the H.323
protocol suite [H.323] for the establishment of IP telephony calls. For the Multi-Field (MF) classifi-
cation and marking of those user flows at the edge router, the source and destination IP addresses
and TCP/UDP port numbers of the connection are required. However, the port numbers are always
not well-known and are usually negotiated during the call setup.

2.5.1 Use of the Proxies

The main goal of the Proxies or Protocol Gateways is to interfere in the connection setup protocol
exchange. In this way, they are able to intercept and translate the exchanged messages. They can
extract their content, find the required parameters and to pass them to the EAT.

The Proxy Framework of the EAT provides a set of Application-level Proxies or Protocol Gate-
ways. There is one Proxy for each popular connection setup protocol. The Proxies are administered

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 35 of 99

by an entity called the Proxy Manager. The Proxy Manager has the following roles: To locate the
available Proxies and to mediate between them and the EAT.

There are two modes of reservation requests and respectively, two modes of Proxy operation.

2.5.1.1 GUI-initiated Reservation

In the first case, the user initiates a reservation request through one of the GUIs (Advanced or Usual
Reservation GUI). In the case that the port numbers of the legacy application are not known before-
hand and a Proxy is available for this application, the Proxy Manager is contacted by the EAT. The
Proxy Manager should then find the appropriate Proxy, communicate with it (with CORBA) and
request for the port numbers.

When this information is retrieved by the Proxy, it asynchronously notifies the Proxy Manager, who
in turn notifies the EAT. The Proxy may forward as much information as it can retrieve, such as in-
formation about the required bandwidth or the codecs used for the session. The GUI-initiated ap-
proach was used during the 1st trial.

2.5.1.2 Proxy-initiated Reservation

On the Proxy-initiated reservation, the Proxy detects the start of a new connection by inspecting the
messages that pass through it. It then initiates the resource reservation request by notifying the Proxy
Manager. This notification contains all the information that the specific Proxy can supply and consists
of some or all of the following parameters:

• source and destination IP addresses

• destination TCP/UDP port number (also the source port number, if available)

• the type of the service component (audio, video)

• codec (if one is used for media encoding)

• expected bandwidth

• name or SIP address of the requester

The EAT Manager decides whether to continue with this resource request or not, depending on
whether the supplied information is sufficient in terms of user authentication and requested resources.
This means that the information furnished by the Proxy is sufficient for the calculation of the reserva-
tion request parameters by the Converter module. It also means that the requesting user should be
registered in the EAT and that his/her preferences allow for automatic reservation setup by the EAT.
A user may prefer that all her SIP calls be automatically accepted by the EAT and that a reservation
request be sent to the RCL. Another one may define a limited set of destinations for SIP calls that
should be accepted, while the rest should be (silently) not given QoS.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 36 of 99

2.5.2 Implementation of a new Proxy

Although the Proxies are part of the End-User Application Toolkit, they do not run in the same
process as the rest of the EAT, but in their own processes. This is due to the distributed nature of the
EAT and the need for the Proxies to be flexible and located in various sites (for example a Packet
Filter should be placed in the border of the access network). Therefore, a new Proxy must be im-
plemented as an independent program.

The Proxies communicate with the Proxy Manager through a well-defined CORBA interface: A new
Proxy can be created (or an existing Proxy may be modified) to use the
ProxyManager interface in order to signal to the Proxy Manager that a new connection was de-
tected and to provide the corresponding parameters.

/*
 Package aquila.rcl.eat.proxy
 File proxy.idl
 Version 3.8, 28.02.2002

 National Technical University of Athens (NTU)
 Dresden University of Technology (TUD)

 This file contains the interface of the Application Proxies

 IMPORTANT: The ProxyManager within the proxy package also uses/implements
 entities defined in eatManager.idl.
*/

#ifndef proxy_idl
#define proxy_idl

#include "aca.idl"
#include "eatManager.idl"

module proxy {

 struct ProxyDescription {
 long proxyId;
 string proxyName;
 string proxyDescription; // mandatory protocol (H323, SIP, see app profiles)
 long controlPort;
 };
 typedef sequence <ProxyDescription> ProxyDescriptionSeq;

 exception ProxyException {
 string reason;
 };

 interface ApplicationProxy {

 readonly attribute ProxyDescription proxyDescr;

 void registerApplication (
 in long sessionId,

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 37 of 99

 in long proxyId,
 in string sCompName,
 in aca::Address sourceAddress,
 in aca::Address destinationAddress,
 in boolean isBidirectional)
 raises (ProxyException);
 };

 interface ProxyManager : ApplicationProxy, eatManager::SessionStarter {

 const string SERVER_PREFIX = "rcl.directory/eat.directory/proxy.directory/";
 const string SERVER_SUFFIX = ".ProxyManager";

 /**
 * To register an app proxy at the Proxy Manager.
 */
 void registerProxy (in ApplicationProxy appProxy);

 /**
 * To provide the information only for the EAT Manager and the GUIs.
 */
 ProxyDescriptionSeq getApplicationProxies ();
 };
};

#endif // proxy_idl

When a new connection is detected, the establishQoS() function is called, notifying the Proxy
Manager. The Proxy should wait for the outcome of the reservation process (success or failure) that
is given by the function return code. In the same way, a reservation may be released if the Proxy de-
tects that the call was released too.

So far, the Proxy-initiated reservation scenario has been dealt with. A Proxy however, should also
be prepared to answer questions from the EAT about a reservation (GUI-initiated scenario). For this
purpose, it must implement the ApplicationProxy interface, also presented in the previous list-
ing. The Proxy Manager calls the registerApplication() function in order to ask the specific
Proxy for the port numbers of a connection, providing its IP addresses (source and destination).
When this information is detected, the Proxy will reply asynchronously, using again the estab-
lishQoS() call of the ProxyManager interface.

Please note that the ProxyManager interface is an extension of two interfaces: Application-
Proxy and SessionStarter. The latter is presented in the following listing.

/*
 Package aquila.rcl.eat.eatManager
 File eatManager.idl
 Version 3.7, 28.02.2002

 Dresden University of Technology (TUD)
 National Technical University of Athens (NTU)

 This file contains the specification of the internal interface of the EAT
 Manager towards the Proxy, and the Converter.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 38 of 99

*/

#ifndef eatManager_idl
#define eatManager_idl

#include "aca.idl"
#include "service.idl"

module eatManager {

 /**
 * ManagerException containing a message string.
 */
 exception ManagerException {
 string reason;
 };

 /**
 * The session information consits of data detected by the Proxy in order to
 * allow a correct reservation request.
 */
 struct Session {
 long sessionId;
 long proxyId;
 aca::Address sourceAddress;
 aca::Address destinationAddress;
 aca::ProtocolID protocol;
 string serviceComponent; // audio or video
 string payloadType;
 long payloadNumber;
 long bandwidth;
 string requesterName;
 };

 /* --- Session Starter -- */

 /**
 * The SessionStarter interface is implemented by the EAT in order to be
 * informed when the network/session information for an application is
 * available and the reservation request at the ACA can be startet.
 */
 interface SessionStarter {

 const string SERVER_PREFIX =
"rcl.directory/eat.directory/eatManager.directory/";
 const string SERVER_SUFFIX = ".SessionStarter";

 /**
 * A proxy or the ProxyManager calls this function to send/return the
 * session information to the Proxy/EAT Manager in order to allow a
 * reservation request.
 * 'Send' means that the request is initiated by the Proxy itself.
 * 'Return' means that the request is initiated by the end-user, but
 * without knowledge of the session details. So the Proxy helps by
 * responding the registerApplication() message from the EAT Manager.
 *

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 39 of 99

 * @param sessionId The Id of the session. In the case of an user
 * initiated request, the id is choosen by the
 * EATManager as index. In the case of an proxy
 * initiated request it is -1. The EAT Manager
 * then returns the newly created session id.
 * @param sessionInfo The identified session information for this
 * Session.
 * @param isBirectional Indicates whether a reservation has to be
 * requested for both directions or not.
 * @return Is true if the reservation has been
 * successfully established.
 */
 boolean establishQoS (
 inout long sessionId,
 in Session sessionInfo,
 in boolean isBidirectional)
 raises (ManagerException);

 void releaseQoS (
 in long sessionId)
 raises (ManagerException);
 };

 /* --- Persistence Layer Mediator --------------------------------------- */

 /**
 * The PersistenceLayerMediator interface is used to hide the actual used
 * Persistence Layer from the other modules of EAT. In the second trial,
 * the LDAP will be used to store the Application Profiles and the
 * Network Servives (implemented in xml).
 */
 interface PersistenceLayerMediator {

 const string SERVER_PREFIX =
"rcl.directory/eat.directory/eatManager.directory/";
 const string SERVER_SUFFIX = ".PersistenceLayerMediator";

 /**
 * This function may be called by the Converter to retrieve ALL the
 * existing Network Services in order to get their profiles.
 *
 * @return The sequence of the IDs of the Network Services.
 */
 service::ServiceIDSeq getAllNetworkServices ()
 raises (ManagerException);
 };
};

#endif // eatManager_idl

During start-up, the Proxy should register with the Proxy Manager, provide a reference to itself as
well as its description to the PM, using the registerProxy() call.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 40 of 99

2.6 EAT Script

The following chapter contains a short description of the “EAT Script”, useful for a batch processing
of automatic logins, reservation requests, reservation releases, and logouts. A command line tool has
been realised that is able to parse the script and to perform the related actions at the EAT.

The aim of such a mechanism is to support automatic test scenarios. Also the measurement people
may use it for their purposes.

2.6.1 Script Specification

XML is used for the specification of the script due to the following reasons:

• XML is a well established, flexible, easy to understand language for structuring data and docu-
ments [XML, Harold98, Jelliffe98].

• There are some free tools existing for the creation and modification of XML files:

? XML and Web Services DE: http://www.alphaworks.ibm.com/tech/wsde

? XML Notepad: http://msdn.microsoft.com/xml/notepad/intro.asp

? Visual XML: http://www.pierlou.com/visxml/

? xmloperator: http://www.xmloperator.org/

? See also: http://www.garshol.priv.no/download/xmltools/

• Java APIs exist for the parsing of XML documents, e.g. [JAXP].

• The Application Profiles are also based on XML.

2.6.1.1 Document Type Definition

The DTD (EATScript.dtd, see Appendix) specifies the permissible elements and their structure
within each EAT script. It has to be installed in the same directory as the XML scripts themselves. It
is not useful to modify it but only to use it for syntax and semantic checks.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 41 of 99

The root element is called EATScript. The script can optionally start with an Import element in
order to “import” identifiers (LoginName, RequestId) of previous scripts. But generally, the
EATScript consists of Login, Request, Release, and Logout elements. Their order and
the number is free in terms of the syntax. (However, it makes no sense to release a reservation be-
fore requesting it. Note also that a logout also releases all reservations of the belonging user.)

A Login requires two attributes: an identifier LoginName and a Password. Request and
Logout elements have to refer to the above LoginName.

A Request requires its own identifier RequestId that is referred by Release. Moreover,
Request consists of one or more RequestSpec elements that require a list of elements
(NetworkService, SLS) that is related to the actual advanced request interface as it is specified
in api.idl. If more than one RequestSpec elements are defined in a Request, a multiple reserva-
tion unit is automatically built. However, reservation groups are not supported.

For the TrafficSpec elements, the units of the values are given as attributes. However, these
units are at the moment fixed, because they mainly support the script editors by specifying the values.

2.6.1.2 XML Examples

In the Appendix, two sample XML files are given: The first script (Example.xml) includes one login,
two requests, and the release of the first request. The requests are for two different network services
and are filled by some “reasonable” values. The second request consists of two reservation
(RequestSpec) elements that form a bi-directional reservation. The second script (Example1.xml)
then contains the release for the second of the above mentioned reservations.

2.6.2 Command Line Tool

A command line tool has been realised that allows the parsing and execution of an XML file’s con-
tent. This tool is implemented by the Java class EATScript.java. To parse an EAT script file4 type:

java aquila.rcl.eat.script. EATScript [-v] <eat_name>
<xml_filename>

(The optional parameter –v switches the verbose mode on so that additional parsing messages are
printed.)

For example:

java aquila.rcl.eat.script.EATScript eat_dresden Example.xml

4 Note that EATScript.java uses a validating parser. Therefore, the XML script should fulfil the DTD grammar.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 42 of 99

The EAT script parser is based on the Sun’s Java API for XML Parsing [JAXP], version 1.1.
Download this API, install it, and add jaxp.jar as well as crimson.jar and xalan.jar to the CLASS-
PATH.

The parser communicates with the EAT via CORBA; the EAT must be running when the script
starts.

EATScript.java itself is stateless, but the EAT Manager keeps all information about active end-users
and reservations. So it is possible to refer to previous executed scripts by using the import elements.
For example, a request that has been executed by the first script can be released by the second one:

java aquila.rcl.eat.script.EATScript eat_dresden Example1.xml

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 43 of 99

3 Application Scenarios

3.1 Basic Internet Application Support

This section discusses about the way the EAT supports Basic Internet Applications. The latter are
often legacy applications that cannot directly use the EAT (the EAT-provided API). We can think of
the following classification of Basic Internet Applications, according to their QoS awareness:

• QoS-unaware applications. Such applications have no means to express their QoS requirements.
The user is responsible to set-up reservations for such applications in two modes: advanced and
regular. So, the support offered by the EAT is user-initiated.

• QoS-aware applications. Such applications can express their QoS requirements through signal-
ling protocols, like SIP and RSVP, but they cannot be modified to use the EAT API. These ap-
plications are supported transparently for the user through the internal EAT modules and the use
of the concept of User Profiles. So the support offered by the EAT is EAT-initiated. However,
the user may select (by defining the User Profile appropriately) to not let the EAT make the res-
ervations transparently. So, even for such applications the user-initiated approach may be used.

Apart from the QoS-awareness, the Basic Internet Applications can have single or multiple sessions.
In the former case, the user or the EAT has to make one reservation for the single session of the ap-
plication, while in the latter case the user or the EAT may perform more than one reservation, one for
each session. The EAT therefore introduces the concept of the reservation units and reservation
groups.

Reservation Units refer to single reservations or even multiple reservations that are treated by the
EAT like a single one. Reservation units cannot be separated after creation and they can be deleted
all at once. As an example, consider an IP telephony (VoIP) application. Usually, for such applica-
tions, a bi-directional reservation has to be established, both from the source to the destination and
back from the destination to the source. These two reservations will form a single reservation unit.

Reservation Groups refer to multiple reservations that are logically gathered under one group.
Groups are structures that give the possibility to the user to treat a set of reservations together. The
difference from the reservations units is that in the groups the individual reservations can be de-
associated from the group or released one by one. Considering a multimedia application, with one
audio and one video session, the reservation group concept provides the user with the capability to
treat these reservations as one logical entity. This facilitates the reservation and release of the
grouped reservations in one movement, and adds user-friendliness to the approach; it is easier than
having to reserve and release each one separately. However, it also provides the possibility to per-
form for example the release in one movement.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 44 of 99

3.1.1 User-initiated Approach

The user can take advantage of the EAT capabilities through the use of the AQUILA Portal (see
section 2.3). In order to start using the portal, the user must first login, providing his/her username
and password. After successful authentication, the user can mainly perform reservations, release of
active reservations, manipulation of the reservation groups, and finally to logout.

There are two main modes of reservation requests: the advanced mode and the regular one. The
main difference is that for the former the user is supposed to know the general Internet QoS concept,
some more specific AQUILA issues, as well as the exact QoS requirements of the application that is
going to be used. On the other hand, the usual mode implies that all this knowledge is inherently pro-
vided by the EAT through the use of some technical developments like the Application Profiles and
the Converter. In both cases, the user after specifying the required QoS (by filling in the actual reser-
vation parameters or by selecting the desired prepared options respectively) will have to manually
tune the application options, in order to be consistent with the requested QoS.

Independently of the reservation mode, the EAT may need to make use of the Proxy Framework to
find out network connection parameters. In a few words, in order for the Proxy Framework to be
able to identify these parameters, the application must be already launched and its sessions should be
established. This fact implies that the reservations will actually be performed only after the user has
established all application’s sessions. Anyway, the duration of an active reservation (incl. accounting,
charging, etc.) is always determined by the EAT and not by the application.

The release of the active reservations can be performed independently of the continuation of the ap-
plication. The release can be performed either by explicitly using the Release GUI or implicitly by
performing a logout.

3.1.2 EAT-initiated Support

The EAT takes advantage of the Proxy Framework to make reservations and releases on behalf of
the user, based on the User Profile. The Proxy Framework is actually responsible for detecting new
QoS-aware sessions and providing the EAT with all the necessary information to actually perform
the reservations or releases. For this purpose, internal intelligent mechanisms are used to map the
QoS requirements expressed in some formation (e.g. in RSVP Flowspec, or SDP session info) to
the AQUILA-based reservation formation, within the Converter.

The users are however able to see the EAT-initiated active reservations through the normal use of
the portal. Again, after a successful login, they can go to the Active Reservations GUI page and have
a look at the performed reservations or choose to release them.

3.1.3 Reservation Units and Groups

The support of reservation units and groups provide the user with the following functionality:

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 45 of 99

• Make two or more reservations to be treated as one reservation unit, implying always simultane-
ous establishment or release of the reservation unit.

• Group together session’s reservations that physically belong to the same application.

• Group together session’s reservations that logically belong to the same type of applications. This
also implies that groups of reservation may be grouped together to form a higher-level group.

The existence of reservation groups provides easier manipulation of a bundle of reservations that
physically or logically belong to the same group. Moreover it provides a more efficient support to-
wards applications. Taking as an example an application with two (or more) reservations, the user is
able to specify all of them and submit them as a group for the actual reservation to take place. This
ensures that the reservations will be performed almost at the same time, preventing the user from be-
ing charged for a reservation for one session before the rest reservations are actually accomplished.

(More details about the actual use of reservation units and groups can be found in Section 2.3)

3.2 Complex Internet Service Support

A Complex Internet Service (CIS) consists of several Basic Internet Applications services like email,
chat, video/audio streaming etc. The quality requirements on the Basic Internet Applications are dif-
ferent from user to user, depending on their technical knowledge, on their know-how of broadband
media services and on their subjective impressions. To guarantee these very individual requirements,
a corresponding QoS support must be set-up: The CIS may use the interfaces of the EAT (e.g. the
API and the Application Profiles) to provide user-friendly QoS options at different levels towards its
users.

First of all, a lot of technical preferences have to be selected in order to create a Complex Internet
Service. These are for example the choice of the Basic Internet Applications, the interaction of the
required components and the specifications of layout (e.g. screen size of a video). They have a direct
or an indirect influence on the possible QoS parameters (e.g. the screen size of a video defines how
much data has to be transferred in order to show the video in the selected quality).

The following sub chapters make recommendations for the QoS support of a Complex Internet Ser-
vice. AQUILA Mediazine will be used as an example of CIS.

3.2.1 Recommendations for the Creation of QoS Level

Creating three categories of Internet connections is appropriate for Mediazine. This is a manageable
number for the user, if he/she wants to specify his/her Internet connection in a more detailed way and
it mirrors the up to date technical possibilities. Of course there are other possibilities of classification.
The consequences of a classification modification are stated in chapter 3.2.3.

The three categories to classify today's existing Internet connections are:

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 46 of 99

1. Low bandwidth connection up to 128 kBit e.g. modem/ISDN connection

2. Medium bandwidth connection 128 kBit-2 MBit e.g. DSL/cable modem connection

3. High bandwidth connection more than 2 MBit e.g. LAN connection

The kind of connection influences quality features which are dependent on the limitation of the
amount of transferred data per time interval, e.g. the size of the pictures of a video stream at a certain
compression. To each connection category corresponds a category of services (QoS category),
where a specific quality can be guaranteed:

Bronze - time critical applications with a small amount of transferred data, e.g. action games

 - services with speech input and output, e.g. Internet telephony

 - audio streams, e.g. Internet radio

Silver - same applications as under Bronze

 - video/live streams with small or medium size of the pictures, e.g. Internet TV by a
resolution of 320x240 pixels

Gold - same applications as under Silver

 - video/live streams in TV quality (720x576 pixels)

The exact allocation of the Basic Internet Application to one of the above mentioned categories
should result from the technical features in combination with the respective Application Profiles of the
services (see also chapter 2.4). The correlation between the QoS categories and the Application
Profiles will be described in chapter 3.2.3.

In each category, the user encounters the following restrictions, depending on the bandwidth of
his/her connection:

• At a low bandwidth, only Bronze QoS support can be guaranteed.

• At a medium bandwidth, the user can choose the warrantee of the Bronze or Silver category.

• At a high bandwidth, the user has free choice of all categories.

The user should be clearly informed that the higher the category is, the higher the costs will be. In-
deed, the costs increase with the growth of offered and guaranteed bandwidth. The user will have to
bear the additional costs, either directly (higher fee) or indirectly (more advertisement, release of per-
sonal information, etc.). The nomenclature of the categories was selected to make them easily recog-
nisable and to help the user to create relations between them and the emerging costs.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 47 of 99

3.2.2 Recommendations for the Creation of a Set-up Menu for the QoS Service

The users of Internet services can be divided into two groups according to their knowledge and ex-
perience in the use of computers and the Internet:

A. Technically experienced user

B. Novice

Both users correspond to “regular” user, which is described in chapter 2.3. As far as the example of
a Complex Internet Service – AQUILA Mediazine – is concerned, the technical experienced user
will be referred to as “Mediazine expert” and the novice will be referred to as “Mediazine novice”.

The Mediazine expert can be asked for detailed information and technical terms such as the kind of
connection, the bandwidth, etc. He/she can also deal with the corresponding information like latency,
packet loss, etc. On the other hand, for the inexperienced user, such information should be described
in general terms like “fast”, “big”, “CD quality”, etc.

The afore descriptions result in particular specification criteria for the QoS support of a Complex
Internet Service necessary for a set-up menu aiming at helping the user configure QoS based appli-
cations. The CIS set-up menu should start by testing the user’s knowledge of computers and Internet
(example see Figure 3-1). You will find notes to the following figures at the end of this sub chapter.

Figure 3-1: Settings: user selection

Thereafter, the following proceedings can be recommended:

a) Ask about the connection:

Mediazine expert Mediazine novice

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 48 of 99

It is recommended to detect the kind of con-
nection automatically. Should it not be possible,
it is advisable to use general descriptive terms
like e.g.:

- slow connection (modem/ISDN)

- medium fast connection (DSL/cable mo-
dem)

On the inquiry on the connection, additional
details (28.8 kBit modem, 10 MBit LAN) can
be asked for, in order to generate a better
profile for the QoS support.

- fast connection (LAN)

Figure 3-2: Settings: connection expert

Figure 3-3: Settings: connection novice

Table 3-1: Mediazine connection settings

b) Ask about the QoS category:

Mediazine expert Mediazine novice

Depending on the connection, different levels of
QoS support should be available, for example:

- QoS support on/off

- Bronze on/off by low bandwidth

- Bronze/Silver on/off by medium bandwidth

The user has the possibility to adjust the QoS
support settings, based on the present profiles
of the various Basic Internet Applications or to
use the standard user settings (see right side).

- Bronze/Silver/Gold on/off by high band-
width

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 49 of 99

 Depending on the selected category, the QoS
settings should be adjusted with the help of the
Basic Internet Applications profiles.

Figure 3-4: Settings: QoS category expert

Figure 3-5: Settings: QoS category novice

Table 3-2: Mediazine QoS category settings

The relationship between the Complex Internet Service and the EAT (i.e. the Application Profiles)
regarding the choice of the different QoS categories will be explained in a more detailed way in
chapter 3.2.3.

For a better understanding of the selection possibilities in the set-up menu a help menu with extensive
commentary should be available in addition to the “MouseOver” functions shown in the above fig-
ures. Especially the selection of the QoS category by the standard user requires further information.
This will enhance the usability of the Complex Internet Service.

Furthermore it is recommended to allow the user to change the settings of the QoS service and
his/her Internet connection on his/her own. This enables him to define his/her standard settings but
also to have fast and uncomplicated access to special settings for special services. One of these ser-
vices could be an Internet-Live-Concert, that he/she wishes to see in category „Gold“ whilst his/her
normal category is only „Bronze“.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 50 of 99

3.2.3 Recommendations for the Interaction of the CIS and the EAT

During the phase of conception and development of a Complex Internet Service, basic conditions
will have to be made, e.g. functions of the service, used Basic Internet Applications, layout etc.
These conditions will influence the parameters that are necessary for the QoS support, e.g. the
choice of the QoS category. In this context the following questions have to be answered: Which and
how many categories are needed? In which way can a surplus value for the service provider be cre-
ated by the usage of these categories? And in which way can this surplus value be quantified?

It is not the subject of this report to deal with billing systems or accounting systems or with questions
of security and warranty that always occur in the usage of such a system. The business models will
be dealt with in AQUILA document D3302. But the above mentioned questions are crucial for the
assignment of the Basic Internet Applications and their relationship to the QoS categories (for further
information see chapter 3.2.1).

The Basic Internet Applications can only be assigned by the development of a Complex Internet
Service, because the conditions can only be defined there. It is recommended to use appropriate
correlation profiles to allow better usage and easy modification. These profiles will be referred to as
“QoS Category Profiles”.

Example of a “QoS Category Profile” for AQUILA Mediazine:

Figure 3-6: QoS Profile Mediazine

This profile describes the correlation between a special QoS category and the options of a Basic
Internet Application Profile by using the “Application Name” and the “Service Component”. For
each Basic Internet Application and its service components, one of the options will be used as de-
fault option (see also Figure 3-6).

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 51 of 99

The Mediazine expert has to have the possibility to change the QoS parameters within the CIS set-
up menu in detail.

Figure 3-7: Settings: all QoS cat. exp. user

Example: Typical values of such QoS parameters used for the service WinAmp, an application to
play audio and video files.

ApplicationName = WinAmp

Version = 2.77

Location = C:\Programme\Winamp\Winamp.exe

SupportedMediaTypes = mp3, mp2, wav

QoS Category = Bronze

Quality = medium quality

Bandwidth [KB/s] = 64

Sampling rate [KHz] = 44

QoS Category = Silver

Quality = CD quality

Bandwidth [KB/s] = 256

Sampling rate [KHz] = 44

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 52 of 99

As can easily be seen, a part of the data depends on the characteristics of the service used by Wi-
nAmp or of WinAmp itself, e.g. the programme version, the location of the application and the as-
signment of the categories. This data should be available within the Complex Internet Service. Other
parts are QoS specific, containing the bandwidth and quality of the transmission. This data can be set
in the profiles of the Basic Internet Applications, as they are provided and used by the EAT.

In case of the EAT the necessary QoS parameters of the Basic Internet Applications can be ex-
tracted from the respective Application Profiles (see also chapter 2.4 and Figure 3-8). For it the
EAT API offers an interface named ApplicationManager with the function
getAvailableApps():ApplicationInformation[] (look at chapter 2.2). To explore
the usage of the EAT API for the creation of a QoS session see chapter 2.2 (there you will find a
usage scenario in section 2.2.2).

Figure 3-8: Application Profile RealPlayer

The relationships between the QoS profiles and the Application Profiles are defined by the parame-
ter “Option” with the “OptionID”. For the description of this parameter see also the Service Com-
ponent Specification DTD (Service Component Profile) in the Appendix. Figure 3-9 illustrates a re-
lationship between the Mediazine QoS profile and an EAT Application Profile for the Basic Internet
Application RealPlayer.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 53 of 99

Figure 3-9: Correlation between QoS Profile and Application Profile

It is not possible to define exactly which data will have to be saved in which way and in which pro-
file. Whether for the development of a Complex Internet Service or for the creation of Application
Profiles with the EAT, the developer can imagine and design the way the service can be used in the
future by the end-user. It is important that the design of the service enable the user to easily grasp
how to handle the settings of the QoS parameters.

3.2.4 Recommendations for the Feedback on the Status of the Connection of
the QoS Categories

Another essential aspect of the availability of a QoS supported Complex Internet Service is the
feedback on the status of the connection of the QoS categories chosen by the user. The user will not
be willing to bear the additional costs for QoS support, if there is no obvious service in return. It is
crucial to visualise the effects of the QoS support, because the difference between an enabled and a
disabled QoS service is not always easy to seize for the user.

The format of the feedback should be adapted to the needs of the user, that is to say to his/her pro-
file.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 54 of 99

Mediazine expert Mediazine novice

To verify whether the user settings work prop-
erly, the user should be given the possibility to
inquire on detailed information on the connec-
tion such as e.g. currently transferred amount
of data, packet loss, latency etc or to use the
feedback of the standard user.

The user should be informed of the correct
functioning of the settings by an obvious symbol
showing the selected QoS category.

Table 3-3: Recommendations for Mediazine users

The feedback on the status of the connection for the selected QoS category should be delivered by
the necessary measurement tools. However, as this part is not a feature of the EAT, the application
itself has to care of it.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 55 of 99

4 Configuration Guide for EAT

The configuration of the EAT is based on XML files which are stored in a central LDAP database.
Due to the fact that the EAT and the application Proxies run in different processes, there are two
kinds of settings to be taken.

4.1 EAT Settings

The EAT Settings are mainly for the configuration of the Application Profiles the EAT refers. The
Application Profiles themselves, however, are separately stored within the LDAP database. The
EAT configuration file just contains the path to the profiles as well as a list of their unique names (see
Appendix, eat_dresden.xml as an example).

The following scenario gives a guideline on how to store an Application Profile as well its Service
Component Profiles within the database, and how to configure it for the EAT:

1. Write a new XML file, i.e. the Application Profile for a new application (e.g.
NetMeeting_3.01_AppProfile.xml). Make sure that it is based on the grammar, which is
specified in ApplicationProfile.dtd (see Appendix).

2. Write new XML file(s), i.e. the Service Component Profile for all service components of the
above-mentioned application (e.g. NetMeeting_3.01_Video.xml and
NetMeeting_3.01_Audio.xml). Make sure that they are based on the grammar, which is speci-
fied in ServiceComponentProfile.dtd (see Appendix). Make also sure that the above-mentioned
app profile contains references to these new files.

3. Store these profile files within the LDAP database:
 java -cp <aquila classes>;<jaxb-rt-1.0-ea.jar> aquila.uil.main.StoreXml

 "cn=NetMeeting_3.01_AppProfile,cn=appProfile,cn=eat,cn=rcl"
 NetMeeting_3.01_AppProfile.xml
 aquila.rcl.eat.appProfile.ApplicationProfile

 java -cp <aquila classes>;<jaxb-rt-1.0-ea.jar> aquila.uil.main.StoreXml
 "cn=NetMeeting_3.01_Video,cn=appProfile,cn=eat,cn=rcl"
 NetMeeting_3.01_Video.xml
 aquila.rcl.eat.appProfile.ServiceComponentProfile

 java -cp <aquila classes>;<jaxb-rt-1.0-ea.jar> aquila.uil.main.StoreXml
 "cn=NetMeeting_3.01_Audio,cn=appProfile,cn=eat,cn=rcl"
 NetMeeting_3.01_Audio.xml
 aquila.rcl.eat.appProfile.ServiceComponentProfile

4. Add the entry
 <Profile>NetMeeting_3.01_AppProfile.xml</Profile>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 56 of 99

to the EAT configuration file of your EAT (within the ApplicationProfiles tag, see Ap-
pendix).

5. Make sure that the Path attribute of ApplicationProfiles corresponds to the basic
path in 3., e.g. "cn=appProfile,cn=eat,cn=rcl".

6. Make sure that the ACAName attribute of EATSettings contains the correct name of the
ACA that belongs to this EAT, e.g. "aca_dresden".

7. Store the EAT settings in the LDAP database as well:
 java -cp <aquila classes>;<jaxb-rt-1.0-ea.jar> aquila.uil.main.StoreXml

 "cn=eat_dresden,cn=eat,cn=rcl" eat_dresden.xml
 aquila.rcl.eat.eatManager.EATSettings

8. Start the EAT:
 java -cp <aquila classes> aquila.rcl.eat.eatManager.EAT eat_dresden

4.2 Proxy Settings

Each application Proxy has to have its own configuration file which contains some basic information
for the Proxy such as its id, and optionally its full name (or description) and the control port it uses
(see Appendix, sip_dresden.xml).

Guideline for configuration:

1. Create a new Proxy configuration file, based on proxy.dtd. Make sure that the EATName attrib-
ute of ProxySettings contains the correct name of the EAT that belongs to this Proxy, e.g.
"eat_dresden".

2. Store the Proxy settings in the LDAP database:
 java -cp <aquila classes>;<jaxb-rt-1.0-ea.jar> aquila.uil.main.StoreXml

 "cn=sip_dresden,cn=proxy,cn=eat,cn=rcl" sip_dresden.xml
 aquila.rcl.eat.proxy.ProxySettings

3. Run the Proxy:
 java -cp <aquila classes> aquila.rcl.eat.proxy.SIPProxy sip_dresden

4. The Proxy registers itself at the already running EAT.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 57 of 99

5 Abbreviations

A

ACA Admission Control Agent

API Application Programming Interface

AQUILA Adaptive Resource Control for QoS Using an IP-based Layered Architecture

B

BIA Basic Internet Application (Legacy Application)

C

CBR Constant Bit Rate

CIS Complex Internet Service

Codec COmpression/DECompression

CORBA Common Object Request Broker Architecture (see ORB)

D

DSL Digital Subscriber Line

DTD Document Type Definition

E

EAT End-user Application Toolkit

F

FTP File Transfer Protocol

G

GUI Graphical User Interface

I

IDL Interface Definition Language

IP Internet Protocol

ISDN Integrated Services Digital Network

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 58 of 99

J

JDK Java Development Kit

L

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

M

MF Multi-Field

N

NS Network Service

O

ORB Object Request Broker (see CORBA)

P

PR Peak Rate

Q

QoS Quality of Service

R

RCL Resource Control Layer

RSVP Resource Reservation Protocol

S

SDP Session Description Protocol

SIP Session Initiation Protocol

SLA Service Level Agreement

SLS Service Level Specification

SR Sustainable Rate

T

TCP Transmission Control Protocol

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 59 of 99

U

UDP User Datagram Protocol

UML Unified Modelling Language

URL Uniform Resource Locator

V

VBR Variable Bit Rate

VoIP Voice over IP

X

XML eXtensible Markup Language

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 60 of 99

6 References

[D1201] IST-1999-10077-WP1.2-SAG-1201-PU-O/b0, System architecture and specifica-
tion for the first trial

[D1202] IST-1999-10077-WP1.2-SAG-1202-RE-O/b1, System architecture and specifica-
tion for the second trial

[D2201] IST-1999-10077-WP2.2-TUD-2201-RE-O/b0, Specification of End-user Appli-
cation Toolkit

[D2202] IST-1999-10077-WP2.2-TUD-2202-PU-O/b0, Description of user applications
for the first trial

[Codecs] PacketCable Audio/Video Codecs Specifications, PKT-SP-CODEC-I02-010620,
Cable Television Laboratories, Inc. 2001

[H.323] International Telecommunication Union, “Visual telephone systems and equipment
for local area networks which provide a non-guaranteed quality of service”, Recom-
mendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Swit-
zerland, May 1996

[Harold98] E. H. Harold, XML: Extensible Markup Language, IDG Books, 1998

[JAXP] Java API for XML Parsing, http://java.sun.com/xml/

[Jelliffe98] R. Jelliffe, The XML and SGML Cookbook, Prentice Hall, 1998

[SIP] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg, “SIP: Session Initiation Pro-
tocol”, IETF RFC 2543, March 1999

[XML] Extensible Markup Language (XML), http://www.w3.org/XML/

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 61 of 99

Appendix

The Application Programming Interface

api.idl

/*
 Package aquila.rcl.eat.api
 File api.idl
 Version 4.4, 07.08.2002

 Dresden University of Technology (TUD),
 National Technical University of Athens (NTUA)

 This file contains the specification of the (internal) api
 of the End-user Application Toolkit (EAT) for the 2nd trial.

 It is intended for the use by the applications as well as the
 Reservation GUI, etc.
*/

#ifndef api_idl
#define api_idl

#include "service.idl"
#include "subscriber.idl"
#include "aca.idl"
#include "appProfile.idl"
#include "converter.idl"
#include "eatPersistence.idl"
#include "proxy.idl"
#include "event.idl"

module api {

 /* --- Forward declarations --- */

 interface QoSSessionRequest;
 interface QoSSession;
 interface QoSSessionGroup;
 interface QoSSessionUnit;

 typedef sequence<QoSSession> QoSSessionSeq;
 typedef sequence<QoSSessionUnit> QoSSessionUnitSeq;

 /**
 * The QoSRequester interface should be implemented by the QoS requesting
 * client in or der to have the chance to inform it about some events
 * concerning the requested reservation, e.g. when a provisional reservation
 * has been accepted/rejected by the ACA, or when a reservation brokes, etc.
 */
 typedef event::EventObserver QoSRequester;

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 62 of 99

 /**
 * APIException containing a message string.
 */
 exception APIException {
 string reason;
 };

 /* --- Common --- */

 typedef service::ServiceIDSeq ServiceIDSeq;
 typedef sequence<aca::SLS> slsSeq;
 typedef sequence<aca::Scope> ScopeSeq;
 typedef sequence<aca::Flow> FlowSeq;
 typedef sequence<octet> XMLStream;

 /* --- Login -- */

 /**
 * The Login interface allows the authentication of an end-user against
 * the EAT (Manager). It is implemented by the EAT.
 * The login information is also forwarded to the ACA.
 */
 interface Login {

 const string SERVER_PREFIX = "rcl.directory/eat.directory/api.directory/";
 const string SERVER_SUFFIX = ".Login";

 /**
 * Login at the EAT Manager's API.
 *
 * @param loginInfo Account name and password.
 * @param clientSessionId Created by a Web server providing the
 * Login GUI.
 * @return Reference to a new QoSSessionRequest
 * object.
 */
 QoSSessionRequest loginClient (
 in subscriber::LoginInfo logInfo,
 in string clientSessionId)
 raises (APIException);

 /**
 * Gets the reference to the QoSSessionRequest object created at the
 * login.
 * Called by the Reservation GUI, the Regular Reservation GUI, etc.
 *
 * @param clientSessionId Web servers' session id, included in the
 * URL.
 * @return Reference to the existing QoSSessionRequest
 * object.
 */
 QoSSessionRequest getQSRequestMeansSessionId (
 in string clientSessionId);
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 63 of 99

 /* --- QoS Session Request -- */

 typedef sequence<string> ClientSessionIdSeq;

 /**
 * The QoSSessionRequest interface is the user agent for QoS session
 * requests and SLA retrieval.
 * Requests can be made on an advanced and on a regular level.
 */
 interface QoSSessionRequest {

 /**
 * The subscriber.
 */
 readonly attribute string accountName;

 /**

 * All current client session ids.
 */
 readonly attribute ClientSessionIdSeq clientSessionIds;

 /* --- SLAs --- */

 /**
 * The SLAs.
 */
 readonly attribute converter::SLASeq contracts;

 /* --- Advanced Request --- */

 /**
 * For the specification of a (single) advanced request.
 *
 * applicationId Name that the end-user uses to identify the
 * application.
 * serviceComponent Service component that this reservation corresponds
 * to.
 * networkService Network service id.
 * reqSLS Requested SLS incl, scope, flow, traffic spec, QoS
 * spec, and schedule.
 * proxyId Id of the proxy to be used (see ApplicationProxy),
 * 0 for none.
 * enabled Indicates whether the reservation shall be
 * immediately established in the edge router or not.
 */
 struct AdvancedSpec {
 string applicationId; // One application
 string serviceComponent; // One service component
 service::ServiceID networkService; // One service
 aca::SLS reqSLS; // One SLSpec
 long proxyId; // One proxy
 boolean enabled;
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 64 of 99

 /**
 * Requests for a (single) QoSSession on advanced level.
 * It is foreseen for reservation requests that are based
 * on the content of the ACA's reservation request interface,
 * the so-called Advanced Reservation Mode.
 *
 * @param requestSpec The requested parameters.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return Reference to a new QoSSessionUnit object with
 * one single element.
 */
 QoSSessionUnit advancedRequest (
 in AdvancedSpec requestSpec,
 in QoSRequester requester)
 raises (APIException);

 /* --- Advanced Multiple Request --- */

 /**
 * For the specification of a multiple (e.g. bi-directional)
 * advanced request.
 *
 * applicationId Name that the end-user uses to identify the
 * application.

 * serviceComponent Service component that this reservation corresponds

 * to.
 * networkServices Network service ids.
 * reqSLSs Requested SLSs incl. scoped, flows, traffic specs,
 * QoS specs, and schedules.
 * proxyId Id of the proxy to be used (see ApplicationProxy),
 * 0 for none.
 * enabled Indicates whether the reservation shall be
 * immediately established in the edge router or not.
 */
 struct AdvancedMultipleSpec {
 string applicationId; // One application
 string serviceComponent; // One service component
 ServiceIDSeq networkServices; // Several services !
 slsSeq reqSLSs; // Several SLSpecs !
 long proxyId; // One proxy
 boolean enabled;
 };

 /**
 * Advanced request for a multiple (e.g. a bi-directional) reservation,
 * building an inseperable unit of session elements, the session unit.
 *
 * @param requestSpec The requested parameters.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return Reference to a new QoSSessionUnit object with
 * as many elements as requested. In the case of a
 * bi-directional session, there are two request

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 65 of 99

 * elements.
 */
 QoSSessionUnit advancedMultipleRequest (
 in AdvancedMultipleSpec requestSpec,
 in QoSRequester requester)
 raises (APIException);

 /* --- Advanced Group Request --- */

 /**
 * For the specification of a group request.
 */
 typedef sequence<AdvancedMultipleSpec> AdvancedSpecSeq;

 /**
 * Advanced request for a group of QoS sessions.
 *
 * @param groupName The optional name of the new group (can be "").
 * @param requestSpecs An array of (multiple) request specifications.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return An new QoSSessionGroup object, containing
 * one QoSSessionUnit object for each (multiple)
 * request.
 */
 QoSSessionGroup advancedGroupRequest (
 in string groupName,
 in AdvancedSpecSeq requestSpecs,
 in QoSRequester requester)
 raises (APIException);

 /* --- Regular Request --- */

 /**

 * Prepares the Regular App GUI with the options from the profile,

 * gets the ids for the session characteristics options to be displayed.
 *
 * @param applicationProfile ID of the associated application
 * profile.
 * @return An array of options of the profiles.
 */
 converter::QoSOptionSeq prepareSessionCharacteristicsOptions (
 in appProfile::ProfileID applicationProfile)
 raises (APIException);

 /**
 * For the specification of a (single) regular request.
 * Note that for each service component one request is needed.
 *
 * applicationProfile ID of the associated application profile.
 * applicationId The application name within the application
 * profile.
 * selection Selected session characteristic option from the
 * profile incl. the service component.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 66 of 99

 * reqScope Scope: reservation style.
 * reqFlow Source and dest. addresses, ports, protocol,
 * DSCP.
 * schedule Service schedule: reservation time.
 * proxyName Name of the proxy to be used (see application
 * profile), the EAT Manager can look into the *.rc
 * file in order to get the id of the proxy;
 * "" if no proxy is needed.
 * enabled Indicates whether the reservation shall be
 * immediately established in the edge router or
 * not.
 */
 struct RegularSpec {
 appProfile::ProfileID applicationProfile; // One
 string applicationId; // application
 converter::QoSOption selection; // One service component
 aca::Scope reqScope; // One scope
 aca::Flow reqFlow; // One flow spec
 aca::ServiceSchedule schedule; // One schedule
 string proxyName; // One proxy
 boolean enabled;
 };

 /**
 * Requests for a QoSSession on regular level.
 * It is foreseen for applications which are not QoS-aware
 * but are supported by application profiles for manual,
 * non-professional reservations. The end-user has to ask for the
 * preparation of suitable Session Charactersitics options and requests
 * then for such as QoS session.
 *
 * @param requestSpec The requested parameters.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return Reference to a new QoSSessionUnit object
 * containing one element for the reservation of
 * the specified service component. (For several
 * service components, use regularGroupRequest().)
 */
 QoSSessionUnit regularRequest (
 in RegularSpec requestSpec,
 in QoSRequester requester)
 raises (APIException);

 /* --- Regular Multiple Request --- */

 /**
 * For the specification of a multiple (e.g. bi-directional) regular
 * request.
 *
 * applicationProfile ID of the associated application profile.
 * applicationId The application name within the application
 * profile.
 * selection Selected session characteristic option from the
 * profile incl. the service component.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 67 of 99

 * reqScopes Scopes: reservation styles.
 * reqFlows Source and dest. addresses, ports, protocol,
 * DSCP.
 * schedule Service schedule: reservation time.
 * proxyName Name of the proxy to be used (see application
 * profile), the EAT Manager can look into the *.rc
 * file in order to get the id of the proxy;
 * "" if no proxy is needed.
 * enabled Indicates whether the reservation shall be
 * immediately established in the edge router or
 * not.
 */
 struct RegularMultipleSpec {
 appProfile::ProfileID applicationProfile; // One
 string applicationId; // application
 converter::QoSOption selection; // One service component
 ScopeSeq reqScopes; // Several scopes !
 FlowSeq reqFlows; // Several flow specs !
 aca::ServiceSchedule schedule; // One schedule
 string proxyName; // One proxy
 boolean enabled;
 };

 /**
 * Regular request for a multiple (e.g. a bi-directional) reservation,
 * building an inseperable unit of session elements, the session unit.
 *
 * @param requestSpec The requested parameters.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return Reference to a new QoSSessionUnit object with
 * as many elements as requested. In the case of a
 * bi-directional session, there are two request
 * elements.
 */
 QoSSessionUnit regularMultipleRequest (
 in RegularMultipleSpec requestSpec,
 in QoSRequester requester)
 raises (APIException);

 /* --- Regular Group Request --- */

 typedef sequence<RegularMultipleSpec> RegularSpecSeq;

 /**
 * Regular request for a group of QoS sessions,
 * e.g. for different service components per application.
 *
 * @param groupName The optional name of the new group (can be "").
 * @param requestSpecs An array of (multiple) request specifications.
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return An new QoSSessionGroup object, containing
 * one QoSSessionUnit object for each (multiple)

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 68 of 99

 * request.
 */
 QoSSessionGroup regularGroupRequest (
 in string groupName,
 in RegularSpecSeq requestSpecs,
 in QoSRequester requester)
 raises (APIException);

 /* --- Common --- */

 /**
 * Creates an empty QoSSessionGroup.
 *
 * @param groupName The optional name of the new group (can be "").
 * @param requester The requester object that has to be notified
 * when something happens with the reservation.
 * Can be null.
 * @return An new, empty QoSSessionGroup object.
 */
 QoSSessionGroup createEmptyGroup (
 in string groupName,
 in QoSRequester requester)
 raises (APIException);

 /**
 * Returns all active reservations.
 *
 * @return Sequence of QoSSession objects, both groups and units.
 */
 QoSSessionSeq getActiveQoSSessions ();

 /**
 * Returns all active session units, also those which are in goups.
 *
 * @return Sequence of QoSSessionUnit objects (no groups).
 */
 QoSSessionUnitSeq getQoSSessionUnits ();

 /**
 * Retrives the list of all former and actual reservations of this user.
 *
 * @return Sequence of ReservationData incl. reservation parameters and
 * accounting data.
 */
 eatPersistence::ReservationDataSeq retrieveReservationHistory ();

 /**
 * Closes explicitely a client session without logout;
 * removes the client session id from the list.
 *
 * @param clientSessionId Web servers' session id, included in the
 * URL.
 */
 void close (
 in string clientSessionId)
 raises (APIException);

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 69 of 99

 /**
 * Logs the end-user out, releases all reservations.
 */
 void logout ()
 raises (APIException);
 };

 /* --- QoS Session -- */

 /**
 * SessionStatus indicates whether a requested (and by the EAT accepted)
 * reservation is still provisional (waiting for Proxy response) or already
 * accepted by the ACA and therefore active.
 * (Rejected reservations are immediately released, and the client is
 * informed.)
 */
 enum SessionStatus {
 Provisional, // Waiting for the answer from the Proxy
 Active, // Requested and admitted by the ACA
 Enabled // Enabled at the edge router
 };

 /**
 * A QoSSession can be session group or unit.
 */
 interface QoSSession {

 /**
 * The unique session id of this session group or unit.
 */
 readonly attribute long sessionId;

 /**
 * Is this a session group or unit?
 */
 readonly attribute boolean isGroup;

 /**
 * The aggregating group. Can be null.
 */
 readonly attribute QoSSessionGroup group;

 /**
 * The requester of this session, can be null.
 */
 readonly attribute QoSRequester requester;

 /**
 * Releases the associated reservation unit (and all of its elements) or
 * the whole group (all aggregated units and groups are also released).
 * Automatically retrieves and stores the accounting data from the ACA
 * for each unit and all of its elements.
 */
 void release ()
 raises (APIException);

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 70 of 99

 /**
 * Suspends the associated reservation unit or the whole group,
 * i.e. all reservation units are released but without retrieving
 * any accounting information.
 */
 void suspend ()
 raises (APIException);
 };

 /**
 * The QoSSessionGroup interface belongs to a reservation group,
 * e.g. reservations (units) for several service components per application.
 */
 interface QoSSessionGroup : QoSSession {

 /**
 * The optional name of this group.
 */

 attribute string groupName;

 /**
 * The QoS sessions. Can be either other essions groups or units or
 * even both.
 */
 readonly attribute QoSSessionSeq sessions;

 /**
 * Returns one specific QoSSession object of this group.
 *
 * @param sessionId The session id of the reservation.
 * @return The QoSSession object with the specified id.
 * Null if none.
 */
 QoSSession getSession (in long sessionId);

 /**
 * Adds/joins an already established QoSSession to this group.
 * Unlinks it from the former group/container.
 *
 * @param sessionId The session to be added to this group.
 */
 void join (in QoSSession session)
 raises (APIException);

 /**
 * Removes a QoSSession object from this group without releasing it.
 * Links it directly to the QoSSessionRequest.
 *
 * @param sessionId The session to be removed from this group.
 */
 void leave (in QoSSession session)
 raises (APIException);

 /**
 * Reamoves all QoSSession objects from this group without releasing
 * them.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 71 of 99

 */
 void leaveAll ()
 raises (APIException);
 };

 /**
 * The QoSSessionUnit interface belongs to an actual reservation unit
 * (in terms of the ACA: a reservation bundle). While such a unit may
 * consist of more than one reservation element, it must be handled as only
 * one (multiple) reservation, for example a bi-directional one.
 */
 interface QoSSessionUnit : QoSSession {

 readonly attribute short numberOfElements; // e.g. 1 for an uni-
 // directional reservation,
 // 2 for a bidirectional one
 readonly attribute SessionStatus status;

 // Content of the advanced/regular request:
 readonly attribute appProfile::ProfileID applicationProfile;//"" if none
 readonly attribute string applicationId;
 readonly attribute converter::QoSOption selection; //null if none
 readonly attribute ServiceIDSeq networkServices;
 readonly attribute slsSeq reqSLSs;
 readonly attribute long proxyId;

 /**
 * Gets the accounting data of this session.
 *

 * @return Accounting information array of this session unit,

 * containing one entry per requested reservation element.
 */
 aca::AccountingSeq getAccountingInformation ();

 /**
 * Enables an already active but not in the edge router installed
 * reservation.
 */
 void enable ()
 raises (APIException);
 };

 /* --- RequestEvent (for QoSRequester) ---------------------------------- */

 /**
 * RequestKind describes what with a reservation (request) ca be happen:
 * A provisional reservation can be accepted or rejected.
 * An already established reservation can be released, e.g. when it brokes
 * or when the schedule finishes.
 */
 enum RequestKind {
 Accepted,
 Rejected,
 Released
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 72 of 99

 /**
 * RequestEvent contains the QoSSession id, the kind of the occuring event,
 * and a optional reason.
 */
 valuetype RequestEvent : event::GeneralEvent {
 #pragma ID RequestEvent "IDL:aquila/rcl/eat/api/RequestEvent:1.0"
 public long sessionId;
 public RequestKind kind;
 public string reason;
 };

 /* --- Application Manager --- */

 /**
 * ApplicationInformation contains the ID of the associated app profile,
 * the app's name, the version, and the build no.
 */
 struct ApplicationInformation {
 appProfile::ProfileID applicationProfileID;
 string applicationName;
 string versionNo;
 string buildNo;
 string type;
 string scope;
 };
 typedef sequence<ApplicationInformation> ApplicationInformationSeq;

 /**
 * Semantical Group
 */
 struct Semantical {
 string description;
 string type;
 string language;
 sequence<string> qualifiers;
 };
 typedef sequence<Semantical> SemanticalSeq;

 /**

 * Session Characteristics
 */
 struct SessionCharacteristics {
 string name;
 SemanticalSeq semantics;
 };
 typedef sequence<SessionCharacteristics> SessionCharacteristicsSeq;

 /**
 * Service Component Option
 */
 struct SCOption {
 string optionId;
 string description;
 string networkSpeed;
 string transportProtocol;
 SessionCharacteristicsSeq sessionCharacteristics;

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 73 of 99

 };
 typedef sequence<SCOption> SCOptionSeq;

 /**
 * ServiercComponentInformation contains the ID of the associated sc profile,
 * the type and the options incl. the session characteristics.
 */
 struct ServiceComponentInformation {
 appProfile::ProfileID serviceComponentProfileID;
 string componentName;
 string type;
 SCOptionSeq options;
 };
 typedef sequence<ServiceComponentInformation> ServiceComponentInformationSeq;

 /**
 * The ApplicationManager interface provides information about installed
 * available application (profiles), application proxies, etc.
 */
 interface ApplicationManager {

 const string SERVER_PREFIX = "rcl.directory/eat.directory/api.directory/";
 const string SERVER_SUFFIX = ".ApplicationManager";

 /**
 * Gets all available apps for the Legacy App GUI.
 *
 * @return Sequence of ApplicationInformation objects.
 */
 ApplicationInformationSeq getAvailableApps ();

 /**
 * Gets all available service components of one app profile.
 *
 * @return Sequence of ServiceComponentInformation objects.
 */
 ServiceComponentInformationSeq getAvailableSCs (
 in appProfile::ProfileID applicationProfileID);

 /**
 * Any client, e.g. the servlets that construct the Regular Reservation
 * GUI may call this function to retrieve the OBJECTS representing the
 * xml profile. (See also appProfile::ProfileManager.)
 *
 * IMPORTANT NOTE: Does not work well with CORBA.
 *
 * @param applicationProfileID The id of the application profile
 *
 * @return The reference to the profile object

 */

 appProfile::ExtApplicationProfile getApplicationProfile (
 in appProfile::ProfileID applicationProfileID)
 raises (APIException);

 /**
 * Any client, e.g. the servlets that construct the Regular Reservation
 * GUI may call this function to retrieve the STREAM representing the

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 74 of 99

 * xml profile. The servlets are responsible to internally parse the
 * profiles in order to retrieve the required information.
 * Due to the fact that the Application Profiles only refers to separate
 * Service Component Profiles, this operation has to be called several
 * times in order to get all data.
 *
 * @param profile The id of the application profile
 *
 * @return The (byte) stream of the xml profile
 */
 XMLStream getProfileStream (
 in appProfile::ProfileID profile)
 raises (APIException);

 /**
 * Gets all installed proxies for the Reservation GUI.
 *
 * @return Sequence of ApplicationProxy objects.
 */
 proxy::ProxyDescriptionSeq getApplicationProxies ();
 };

 /* --- Network Service Distributor -------------------------------------- */

 /**
 * NetworkService is an "mirror" of the Network Service Profile, accessible
 * via CORBA. (An Application does not have access to the LDAP DB.)
 */
 struct NetworkServiceInformation {
 service::ServiceID servId;
 string fullName;
 };
 typedef sequence<NetworkServiceInformation> NetworkServiceInformationSeq;

 /**
 * The ServiceDistributor interface provides information about available
 * network services, and which ones are included in the current SLA.
 */
 interface ServiceDistributor {

 const string SERVER_PREFIX = "rcl.directory/eat.directory/api.directory/";
 const string SERVER_SUFFIX = ".ServiceDistributor";

 /**
 * Gets all available network services.
 *
 * @return Sequence of NetworkService objects.
 */
 NetworkServiceInformationSeq getNetworkServices ();

 /**
 * Any client, e.g. the servlets that construct the Regular Reservation
 * GUI may call this function to retrieve the OBJECTS representing the
 * xml data. (See also service::ServiceManager, and service.dtd.)
 *
 * @param netService The id of the network service

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 75 of 99

 *
 * @return The reference to the network service object

 */
 service::NetworkService getNetworkService (
 in service::ServiceID netService)
 raises (APIException);
 };
};

#endif // api_idl

SampleClient.java

/**
 * Title: AQUILA, RCL, EAT<p>
 * Description: Sample API Client<p>
 * Copyright: Copyright (c) Falk Fünfstück<p>
 * Company: TUD<p>
 * @author Falk Fünfstück
 * @version 1.0
 */

package aquila.rcl.eat.gui;

import aquila.rcl.aca.*;
import aquila.rcl.eat.api.*;
import aquila.rcl.eat.api.QoSSessionRequestPackage.*;
import aquila.rcl.eat.appProfile.ExtApplicationProfile;
import aquila.rcl.eat.appProfile.SerializableApplicationProfile;
import aquila.rcl.eat.appProfile.ExtServiceComponent;
import aquila.rcl.eat.appProfile.SerializableServiceComponentProfile;
import aquila.rcl.eat.appProfile.ServiceComponentProfile;
import aquila.rcl.eat.converter.*;
import aquila.rcl.eat.eatPersistence.ReservationData;
import aquila.rcl.eat.proxy.ProxyDescription;
import aquila.rcl.service.QoSSpec;
import aquila.rcl.service.TrafficSpec;
import aquila.rcl.subscriber.LoginInfo;

import java.io.File;
import java.io.FileInputStream;
import java.io.ByteArrayInputStream;
import java.util.Properties;
import java.util.Hashtable;

import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.UserException;
import org.omg.CORBA.BAD_OPERATION;

import java.util.Properties;
import javax.naming.Context;
import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;
import javax.naming.Name;
import javax.naming.NameAlreadyBoundException;

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 76 of 99

import javax.naming.NameParser;
import javax.naming.NamingException;

/**
 * This class provides a very simple sample scenario on how to use the EAT API.
 */
public class SampleClient {

 private static SampleClient sc;

 private ORB orb = null;

 private Context nctx = null;
 private DirContext dctx = null;

 public SampleClient(String[] args) {

 Properties props = new Properties(System.getProperties());
 try {
 String filename;
 filename = props.getProperty("aquila.util.main.propertyfile",
 props.getProperty("aquila.util.main.propertyfile",
"aquila.rc"));
 filename = new File(filename).getAbsolutePath();
 props.load(new FileInputStream(filename));
 }
 catch (java.io.IOException ioex) {
 // just ignore
 };

 orb = ORB.init(args, props);
 if (orb == null) {
 System.err.println("Could not get the ORB");
 System.exit(1);
 };

 Hashtable env = new Hashtable();
 env.put ("java.naming.corba.orb", orb);
 env.put (javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");

 DirContext initialContext;
 try {
 initialContext = new InitialDirContext(env);
 try {
 initialContext.createSubcontext("aquila.directory");
 }
 catch (NameAlreadyBoundException nabe) {
 // does not matter
 };
 nctx = (Context)initialContext.lookup("aquila.directory");
 }
 catch (NamingException ne) {
 System.out.println(
 "SampleClient.SampleClient(): NamingException: " +
 "could not retrieve context aquila.directory: " + ne);
 System.exit (1);
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 77 of 99

 try {
 dctx = new InitialDirContext (props);
 }
 catch (NamingException ne) {
 System.out.println(
 "SampleClient.SampleClient(): Could not create DirContext: " +
 ne.getExplanation());
 System.exit (1);
 };
 };

 protected void start(String eatName) {

 try {

 // --- Local EAT --

 Login theLogin = null;
 ApplicationManager theAM = null;

 ServiceDistributor theSD = null;

 try {
 String path = Login.SERVER_PREFIX + eatName +
 Login.SERVER_SUFFIX;
 theLogin = LoginHelper.narrow(
 (org.omg.CORBA.Object) getNamingContext().lookup(path));
 System.out.println("Got the login object");

 path = ApplicationManager.SERVER_PREFIX + eatName +
 ApplicationManager.SERVER_SUFFIX;
 theAM = ApplicationManagerHelper.narrow(
 (org.omg.CORBA.Object) getNamingContext().lookup(path));
 System.out.println("Got the app manager");

 path = ServiceDistributor.SERVER_PREFIX + eatName +
 ServiceDistributor.SERVER_SUFFIX;
 theSD = ServiceDistributorHelper.narrow(
 (org.omg.CORBA.Object) getNamingContext().lookup(path));
 System.out.println("Got the service distributor");
 }
 catch (NamingException ne) {
 System.err.println("Could not resolve " + eatName);
 System.exit(1);
 };

 // --- Tests --

 // Network services:
 NetworkServiceInformation[] services = new NetworkServiceInformation[0];

 System.out.println("Available network services:");
 services = theSD.getNetworkServices();
 for (int i = 0; i < services.length; i++) {
 System.out.println(services[i].servId);
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 78 of 99

 // Available Apps:
 ExtApplicationProfile extAP = null;
 SerializableApplicationProfile serAP = null;

 //ExtServiceComponent extSC = null;
 //SerializableServiceComponentProfile serSCP = null;
 //Option opt;

 ApplicationInformation[] apps = new ApplicationInformation[0];
 System.out.println("Available application profiles:");
 apps = theAM.getAvailableApps();
 for (int i = 0; i < apps.length; i++) {
 System.out.println(apps[i].applicationProfileID);

 ServiceComponentProfile scp;
 ServiceComponentInformation[] scs = new
ServiceComponentInformation[0];
 System.out.println("Available service component profiles:");
 scs = theAM.getAvailableSCs(apps[i].applicationProfileID);
 for (int j = 0; j < scs.length; j++) {
 System.out.println(scs[j].serviceComponentProfileID);

 byte[] xml =
theAM.getProfileStream(scs[j].serviceComponentProfileID);

 scp = ServiceComponentProfile.unmarshal(new
ByteArrayInputStream(xml));

 System.out.println(scp.getServiceComponent().toString() + ";
Delay: " + scp.getQoSRequirement().getMaxDelay().getContent());

 };
 };

 // Login:
 System.out.println("Try to login 'wi' ...");
 QoSSessionRequest request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0815");

 /*
 request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0816");
 request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0816");
 request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0816");
 request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0816");
 request = theLogin.loginClient(
 new LoginInfo("wi", "geheim"), "0816");
 */

 // Request:
 if (request != null) {
 System.out.println("Got the request object");

 // 1. try: PMC

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 79 of 99

 // Structs which contains object references have to be
 // initialized, because their default constructor is empty!
 String app = "app1";
 String com = "component1";
 String ns = "PMC";

 Scope s = new Scope("p2a");
 Flow f = new Flow(
 new Address("10.0.5.2", "255.255.255.0", 0, 0),
 new Address("-1", "-1", 0, 0), (short) 0, (short) 0);
 TrafficSpec ts = new TrafficSpec(
 // PR BSP SR BSS m M
 10000, 2048, 8500, 2048, 40, 512);
 QoSSpec qos = new QoSSpec(100, 10, 0, 50, false);
 ServiceSchedule ss = new ServiceSchedule("", 0, 0, 0);

 SLS slspec = new SLS(s, f, ts, qos, ss);

 AdvancedSpec as = new AdvancedSpec(
 app, com, ns, slspec, 0, true);

 System.out.println("Try to request ...");

 QoSSession session = null;
 session = request.advancedRequest(as, null);

 if (session != null) {
 System.out.println("Got session unit: " + session.sessionId());
 }
 else {
 System.out.println("Couldn't get session");
 };

 // 2. try: PCBR, bidirectional

 // Structs which contains object references have to be
 // initialized, because their default constructor is empty!

 app = "app2";

 com = "component2";
 String[] nss = { "PCBR", "PCBR" };

 s = new Scope("p2p");
 Flow f1 = new Flow(
 new Address("10.0.5.2", "255.255.255.0", 0, 0),
 new Address("10.0.5.3", "255.255.255.0", 0, 0), (short) 0, (short)
0);
 Flow f2 = new Flow(
 new Address("10.0.5.3", "255.255.255.0", 0, 0),
 new Address("10.0.5.2", "255.255.255.0", 0, 0), (short) 0, (short)
0);
 ts = new TrafficSpec(
 // PR BSP SR BSS m M
 10000, 2048, 8500, 2048, 40, 512);
 qos = new QoSSpec(100, 10, 0, 50, false);
 ss = new ServiceSchedule("", 0, 0, 0);

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 80 of 99

 SLS[] slspecs = { new SLS(s, f1, ts, qos, ss), new SLS(s, f2, ts, qos,
ss) };

 AdvancedMultipleSpec ams = new AdvancedMultipleSpec(
 app, com, nss, slspecs, 0, true);

 System.out.println("Try to request ...");

 session = request.advancedMultipleRequest(ams, null);

 if (session != null) {
 System.out.println("Got session unit: " + session.sessionId());
 }
 else {
 System.out.println("Couldn't get session");
 };

 System.out.println("Try to create group ...");

 QoSSessionGroup group = request.createEmptyGroup("Group #A", null);

 if (group != null) {
 System.out.println("Got session group: " + group.sessionId());

 QoSSession[] sessions = request.getActiveQoSSessions();
 System.out.println("Active sessions of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };

 System.out.println("Try to join unit " + session.sessionId() + "
to group ...");

 group.join(session);

 sessions = group.sessions();
 System.out.println("Active sessions of group: " +
group.groupName());
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };

 System.out.println("Try to leave unit " + session.sessionId() + "
from group ...");

 group.leave(session);

 sessions = request.getActiveQoSSessions();
 System.out.println("Active sessions of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };
 }
 else {
 System.out.println("Couldn't get session");
 };

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 81 of 99

 System.out.println("Try to request for a group ...");

 AdvancedMultipleSpec[] amss = { ams, ams };

 group = request.advancedGroupRequest("Group #B", amss, null);

 if (group != null) {
 System.out.println("Got session group: " + group.sessionId());

 QoSSession[] sessions = group.sessions();
 System.out.println("Active sessions of group: " +
group.groupName());
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };

 System.out.println("Try to leave all from group ...");

 group.leaveAll();
 //group.release();

 sessions = group.sessions();
 System.out.println("Active sessions of group: " +
group.groupName());
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };

 sessions = request.getActiveQoSSessions();
 System.out.println("Active sessions of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };
 }
 else {
 System.out.println("Couldn't get session");
 };

 System.out.println("Try to retrieve QoS options ...");

 QoSOption[] options =
request.prepareSessionCharacteristicsOptions(apps[1].applicationProfileID);

 System.out.println("Available options in: " +
apps[1].applicationProfileID);
 for (int i = 0; i < options.length; i++) {
 System.out.print(options[i].serviceComponent + " ");
 System.out.println(options[i].optionId);
 };

 RegularSpec rs = new RegularSpec(apps[1].applicationProfileID,
"NetMeeting", options[0], s, f, ss, "", true);

 session = request.regularRequest(rs, null);

 if (session != null) {

 System.out.println("Got session unit: " + session.sessionId());

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 82 of 99

 }
 else {
 System.out.println("Couldn't get session");
 };

 Scope[] scs = { s, s };
 Flow[] fs = { f1, f2 };
 RegularMultipleSpec rms = new
RegularMultipleSpec(apps[1].applicationProfileID, "NetMeeting", options[0], scs, fs,
ss, "", true);

 System.out.println("Try to request ...");

 session = request.regularMultipleRequest(rms, null);

 if (session != null) {
 System.out.println("Got session unit: " + session.sessionId());
 }
 else {
 System.out.println("Couldn't get session");
 };

 RegularMultipleSpec[] rmss = { rms, rms };

 System.out.println("Try to request for a group ...");

 group = request.regularGroupRequest("Group #3", rmss, null);

 if (group != null) {
 System.out.println("Got session group: " + group.sessionId());
 }
 else {
 System.out.println("Couldn't get group");
 };

 QoSSession[] sessions = request.getActiveQoSSessions();
 System.out.println("Active sessions of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.print(sessions[i].sessionId());
 if (! sessions[i].isGroup()) {
 QoSSessionUnit unit =
QoSSessionUnitHelper.narrow(sessions[i]);
 System.out.println(" (" + unit.applicationId() + ")");
 }
 else {
 QoSSessionGroup gr =
QoSSessionGroupHelper.narrow(sessions[i]);
 System.out.println(" (" + group.groupName() + ")");
 };
 };

 session.release();

 sessions = request.getActiveQoSSessions();
 System.out.println("Active sessions of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.print(sessions[i].sessionId());

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 83 of 99

 if (! sessions[i].isGroup()) {
 QoSSessionUnit unit =
QoSSessionUnitHelper.narrow(sessions[i]);
 System.out.println(" (" + unit.applicationId() + ")");
 }
 else {

 QoSSessionGroup gr =
QoSSessionGroupHelper.narrow(sessions[i]);

 System.out.println(" (" + group.groupName() + ")");
 };
 };

 sessions = request.getQoSSessionUnits();
 System.out.println("Active session units of user:");
 for (int i = 0; i < sessions.length; i++) {
 System.out.println(sessions[i].sessionId());
 };

 System.out.print("Number of reservations in history: ...");
 ReservationData[] rd = request.retrieveReservationHistory();
 System.out.println(rd.length);

 //request.logout();
 }
 else {
 System.out.println("Couldn't get request");
 };
 }
 catch (APIException ae) {
 System.out.println(ae.reason);
 }
 catch (Exception e) {
 System.out.println("Catched exception: " + e);
 e.printStackTrace();
 };
 System.exit(0);
 };

 public Context getNamingContext() {

 Context newContext;

 try {
 newContext = (Context) nctx.lookup("");
 }
 catch (NamingException nExc) {
 newContext = nctx;
 };
 return newContext;
 };

 public static void main (String[] args) {

 if (args.length < 1) {
 System.out.println();
 System.out.println("Usage: SampleClient <eat_name>");

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 84 of 99

 System.exit(1);
 };

 sc = new SampleClient(args);
 sc.start(args[args.length - 1]);
 };
};

Application Profile

ApplicationProfile.dtd

<!--

 * Title: ApplicationProfile

 * Description: The ApplicationProfile gives the possibility to
 describe an application in detail in the scope of
 QoS mechanisms (QoS offer and request) towards a
 QoS enabled network. An ApplicationProfile
 collects protocol information (to know which
 ports are used, etc.) and implementation
 information especially codec, and service
 component information.
 The implementation information describes the
 QoSRequirements of the codec/service components,
 the traffic produced by the codec, and gives
 user-friendly descriptions of the different
 possible quality levels.
 This information enables:
 1. the presentation towards the end-user of
 the application quality levels
 2. the request for QoS (QoS requirements and
 produced traffic behaviour)
 3. the connection to the network layer of the
 QoS enables network
 * Copyright: Copyright(c) Anne Thomas
 * Company: TU Dresden
 * @author: Anne Thomas
 * @E-mail: Anne.Thomas@inf.tu-dresden.de
 * @version: V11 - 29/05/2002
 */
 -->
<!ELEMENT ApplicationProfile (Implementation+, protocol*)>
<!ATTLIST ApplicationProfile
 name CDATA #REQUIRED
 version CDATA #REQUIRED
 build CDATA #IMPLIED
 type (VoIP | MULTIMEDIA | STREAMINGVIDEO | STREAMINGAUDIO | STREAMING
 | GAME | OTHER) #REQUIRED
 scope (unidirectional | bidirectional | p2p |
 xdirectional) #REQUIRED
>

<!ELEMENT Implementation (ServiceComponent,TransportProtocol*)>
<!--
 Applications can implement for their service components standard

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 85 of 99

 codecs. Nevertheless they interpret the codecs and the produced
 traffic for example depends directly of the concrete
 implementation. Here it is possible to reference application
 specific ServiceComponentProfiles mostly based on codecs and
 defining quality levels.
 As applications do not allways support all the quality levels of
 the ServiceComponent, a reference to the optionID of the
 ServiceComponent is necessary.
 !Note that if all optionIDs are implemented, no optionID
 references are necessary.
 A transport protocol is associated to each implemented
 ServiceComponent.
 -->
 <!ELEMENT ServiceComponent (name, optionID*)>
 <!ATTLIST ServiceComponent
 file CDATA #REQUIRED
 >
 <!ELEMENT optionID (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT TransportProtocol (lowerPortNo?,upperPortNo?)>
 <!ATTLIST TransportProtocol
 name (UNSPECIFIED | TCP | UDP) "TCP"
 >
<!ELEMENT protocol (lowerPortNo?,upperPortNo?,isControlPort?)>
<!ATTLIST protocol

 name (UNSPECIFIED | RTP | RTSP | RSVP | SIP | SDP | H320 | H321 |

 H322 | H323 | H324) "H323"
>
 <!ELEMENT isControlPort (#PCDATA)>
 <!ATTLIST isControlPort
 value (true | false) "false"
 >

<!ELEMENT lowerPortNo (#PCDATA)>
<!ATTLIST lowerPortNo
 value (fixed | configurable) "fixed"
>
<!ELEMENT upperPortNo (#PCDATA)>
<!ATTLIST upperPortNo
 value (fixed | configurable) "fixed"
>

ServiceComponentProfile.dtd

<!--
 * Title: ServiceComponentProfile
 * Description: The ServiceComponentProfile gives the possibility
 to specify service components in the scope of a
 QoS request towards a QoS enabled transport
 network. The ServiceComponentProfile offers
 different quality levels for single service
 components like voice, video etc. Therefor beside
 the specification the QoS requirement attributes
 in a generic way, it is possible to describe the
 offered quality options in a first step at
 end-user level, in a second step at network level.

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 86 of 99

 The QoS attributes are extended with weights in
 order to precise the requirements.
 Except the AQUILASpecification needed for the
 project, every other component of the
 specification is generic.
 * Copyright: Copyright(c) Anne Thomas
 * Company: TU Dresden
 * @author: Anne Thomas
 * @E-mail: Anne.Thomas@inf.tu-dresden.de
 * @version: 29/05/2002 V1 - with weights
 */
 -->
<!ELEMENT ServiceComponentProfile (QoSRequirement, Option+)>

<!ATTLIST ServiceComponentProfile
 name CDATA #REQUIRED
 serviceComponent (AUDIO | SPEECH | VIDEO | DATA | OTHER) #REQUIRED
>
<!--
 The QoSRequirement part of the ServiceComponentProfile corresponds
 to the general QoS requirements of the service component under
 whose the service component can work properly.
 -->
<!ELEMENT QoSRequirement (maxDelay, maxJitter, maxLoss, bwGuarantee,
ordering)>
<!--
 maxDelay : "one way latency as unit milliseconds"
 maxJitter : "delay variation as unit milliseconds"
 maxLoss : "packet loss probability as unit percent"
 bwGuarantee : "percentage of bandwidth that is guaranteed"
 ordering : "Must the packets be ordered?"
-->
 <!ELEMENT maxDelay (#PCDATA)>
 <!ATTLIST maxDelay

 unit CDATA #FIXED "ms"

 requirement (veryLow | low | medium | high | veryHigh
 | notRelevant) "medium"
 weight (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10) "5"
 >
 <!ELEMENT maxJitter (#PCDATA)>
 <!ATTLIST maxJitter
 unit CDATA #FIXED "ms"
 requirement (veryLow | low | medium | high | veryHigh
 | notRelevant) "medium"
 weight (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10) "5"
 >
 <!ELEMENT maxLoss (#PCDATA)>
 <!ATTLIST maxLoss
 unit CDATA #FIXED "percent"
 requirement (veryLow | low | medium | high | veryHigh
 | notRelevant) "medium"
 weight (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10) "5"
 >
 <!ELEMENT bwGuarantee (#PCDATA)>
 <!ATTLIST bwGuarantee
 unit CDATA #FIXED "percent"
 requirement (veryLow | low | medium | high |

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 87 of 99

 veryHigh | notRelevant) "medium"
 weight (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10) "5"
 >
 <!ELEMENT ordering EMPTY>
 <!ATTLIST ordering
 requirement (true | false) "true"
 weight (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10) "5"
 >
<!--
 An Option corresponds to a "quality" level that is proposed by
 the implementation of the service compoenent, e.g. picture size,
 sound quality. An Option consists of the generic so called
 SessionCharacteristics (the characteristics in the end-user
 language) and TrafficSpecification (describing the traffic
 produced by the application in qualitative and quantitative
 terms, and the AQUILA dependent AQUILASpecification (technical
 information related to the NSs)
 -->
<!ELEMENT Option (SessionCharacteristic+, TrafficSpecification?,
AQUILASpecification?)>
<!--
 optionID : explicit identifier of an option. In a service
 component profile optionIDs should be unique.
 description : adjective, terms describing the service
 component (e.g. medium, 4CIF ...)
 NetworkSpeed: explicit identifier of a network speed / end-user
 equipment reference. This NetworkSpeed attribut is
 used as an ID that is aimed to be used in
 correlation with the End-User Profile. Some
 applications like NetMeeting adapt their traffic to
 the end-user equipment. Therefore it is necessary in
 the ServiceComponentProfile to refer to this
 characteristic of the end-user equipment.
 The description of the equipment of the end-user
 profile should be the same as this NetworkSpeed
 identifier.
-->
<!ATTLIST Option
 optionID CDATA #REQUIRED
 description CDATA #IMPLIED
 NetworkSpeed CDATA #IMPLIED
 TransportProtocol (UNSPECIFIED | TCP | UDP) "TCP"
>
 <!ELEMENT SessionCharacteristic (name, semanticalGroup*)>

 <!--

 name : of the service component (e.g. picture size)
 semanticalGroup : semantical group for the service component
 (e.g. user friendly description, in english)
 qualifier : adjective, terms describing the service
 component (e.g. medium, 4CIF ...)
 -->
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT semanticalGroup (description, qualifier*)>
 <!ATTLIST semanticalGroup
 type (Technical | UserFriendly) "UserFriendly"
 language (en | de | po | fr | it | es | fi | gr) "en"
 >

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 88 of 99

 <!ELEMENT qualifier (#PCDATA)>
 <!ELEMENT TrafficSpecification (type+, duration, adaptivity,
 burstiness, packetSize, bitRate, flow)>
 <!--
 type : "type of the traffic"
 duration : "living time of the traffic"
 adaptivity : "adaptivity of the traffic to the capacity of the
 connection (application level QoS adaptation)"
 burstiness : "burstiness of the traffic"
 packetSize : "size ofthe packet"
 bitRate : "bit rate"
 flow : "greediness of the flow"
 -->
 <!ELEMENT type EMPTY>
 <!ATTLIST type
 type (realTime | nonRealTime | stream |
 elastic) "nonRealTime"
 >
 <!ELEMENT duration EMPTY>
 <!ATTLIST duration
 value (shortLiving | longLiving)
 "shortLiving"
 >
 <!ELEMENT adaptivity EMPTY>
 <!ATTLIST adaptivity
 value (true | false) "false"
 >
 <!ELEMENT burstiness EMPTY>
 <!ATTLIST burstiness
 value (true | false) "false"
 >
 <!ELEMENT packetSize (averagePacketSize?, maximumPacketSize?,
 minimumPolicedUnit?)>
 <!ATTLIST packetSize
 variability (constant | variable) "constant"
 qualitatively (verySmall | small | medium | big
 | veryBig) "medium"
 >
 <!ELEMENT averagePacketSize (#PCDATA)>
 <!ATTLIST averagePacketSize
 unit CDATA #FIXED "bytes"
 qualitatively (verySmall | small | medium | big
 | veryBig) "medium"
 >
 <!ELEMENT maximumPacketSize (#PCDATA)>
 <!ATTLIST maximumPacketSize
 unit CDATA #FIXED "bytes"
 qualitatively (verySmall | small | medium | big
 | veryBig) "medium"
 >
 <!ELEMENT minimumPolicedUnit (#PCDATA)>
 <!ATTLIST minimumPolicedUnit
 unit CDATA #FIXED "bytes"
 qualitatively (verySmall | small | medium | big

 | veryBig) "medium"

 >
 <!ELEMENT bitRate (peakRate?, averageRate)>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 89 of 99

 <!ATTLIST bitRate
 variability (constant | variable) "constant"
 qualitatively (veryLow | low | medium | high |
 veryHigh) "medium"
 >
 <!ELEMENT peakRate (#PCDATA)>
 <!ATTLIST peakRate
 unit CDATA #FIXED "bit/s"
 qualitatively (veryLow | low | medium | high |
 veryHigh) "medium"
 >
 <!ELEMENT averageRate (#PCDATA)>
 <!ATTLIST averageRate
 unit CDATA #FIXED "bit/s"
 qualitatively (veryLow | low | medium | high |
 veryHigh) "medium"
 >
 <!ELEMENT flow EMPTY>
 <!ATTLIST flow
 value (greedy | non-greedy) "non-greedy"
 >

 <!ELEMENT AQUILASpecification (serviceID, BSP, BSS, minPU, maxPS,
 PR, SR)>
 <!--
 serviceID : Name of the AQUILA NS
 BSP : bucket size for PR (bytes)
 BSS : bucket size for SR (bytes)
 minPU : minimum policed unit (bytes)
 maxPS : maximum (allowed) packet size (bytes)
 PR : peak rate (bit/s)
 SR : sustainable rate (bit/s)
 EAR : Expected Average Rate (bit/s) - Not used
 PR1 : first threshold for bilevel (bit/s) - Not used
 PR2 : second threshold for bilevel (bit/s) - Not used
 -->
 <!ELEMENT serviceID EMPTY>
 <!ATTLIST serviceID
 value (PCBR | PVBR | PMM | PMC | STD | CUSTOM) "STD"
 >
 <!ELEMENT BSP (#PCDATA)>
 <!ATTLIST BSP
 unit CDATA #FIXED "bytes"
 >
 <!ELEMENT BSS (#PCDATA)>
 <!ATTLIST BSS
 unit CDATA #FIXED "bytes"
 >
 <!ELEMENT minPU (#PCDATA)>
 <!ATTLIST minPU
 unit CDATA #FIXED "bytes"
 >
 <!ELEMENT maxPS (#PCDATA)>
 <!ATTLIST maxPS
 unit CDATA #FIXED "bytes"
 >
 <!ELEMENT PR (#PCDATA)>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 90 of 99

 <!ATTLIST PR
 unit CDATA #FIXED "bit/s"
 >
 <!ELEMENT SR (#PCDATA)>
 <!ATTLIST SR
 unit CDATA #FIXED "bit/s"
 >

<!ELEMENT description (#PCDATA)>

Example for Application Profile: NetMeeting_3.01_AppProfile_v01.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ApplicationProfile PUBLIC "NetMeeting 3.01"
"../dtd/ApplicationProfileV11.dtd">
<!--
 Application Profile for NetMeeting
 Version: 12/12/2002
 Changes: No proxy but port numbers for TCP
-->
<ApplicationProfile build="4.4.3388" type="MULTIMEDIA" version="3.01"
name="NetMeeting" scope="xdirectional">
 <Implementation>
 <ServiceComponent file="NetMeeting_3.01_Video_v01.xml">
 <name>NetMeeting_3.01_Video_v01</name>
 </ServiceComponent>
 <TransportProtocol name="TCP">
 <lowerPortNo>0</lowerPortNo>
 <upperPortNo>65535</upperPortNo>
 </TransportProtocol>
 </Implementation>
 <Implementation>
 <ServiceComponent file="NetMeeting_3.01_Audio_v01.xml">
 <name>NetMeeting_3.01_Audio_v01</name>
 </ServiceComponent>
 <TransportProtocol name="TCP">
 <lowerPortNo>0</lowerPortNo>
 <upperPortNo>65535</upperPortNo>
 </TransportProtocol>
 </Implementation>
 <protocol name="H323">
 <isControlPort value="true"/>
 </protocol>
 <protocol name="RTP">
 <isControlPort value="false"/>
 </protocol>
</ApplicationProfile>

Example for Service Component Profile: NetMeeting_3.01_Video_v01.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ServiceComponentProfile PUBLIC "NetMeeting_3.01_Video_v01"
"../dtd/ServiceComponentProfileV1.dtd">
<ServiceComponentProfile name="NetMeeting_3.01_Video_v01" serviceComponent="VIDEO">
 <QoSRequirement>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 91 of 99

 <maxDelay unit="ms" requirement="high" weight="1">1200</maxDelay>
 <maxJitter unit="ms" requirement="low" weight="3">120</maxJitter>
 <maxLoss unit="percent" requirement="medium" weight="5">10</maxLoss>
 <bwGuarantee unit="percent" requirement="high" weight="8">0</bwGuarantee>
 <ordering weight="8" requirement="true"/>
 </QoSRequirement>
 <Option optionID="1" description="video low quality scenario"
NetworkSpeed="56kBit/s Modem" TransportProtocol="TCP">
 <SessionCharacteristic>
 <name>video quality</name>
 <semanticalGroup type="UserFriendly" language="en">
 <description>Video quality</description>
 <qualifier>very low quality (28.8kBit/s)</qualifier>
 </semanticalGroup>
 <semanticalGroup type="UserFriendly" language="de">
 <description>Video-Qualität</description>

 <qualifier>sehr niedrige Qualität (28.8kBit/s)</qualifier>

 </semanticalGroup>
 </SessionCharacteristic>
 <TrafficSpecification>
 <type type="elastic"/>
 <duration value="longLiving"/>
 <adaptivity value="false"/>
 <burstiness value="true"/>
 <packetSize qualitatively="medium" variability="variable">
 <averagePacketSize qualitatively="medium" unit="bytes"/>
 <maximumPacketSize qualitatively="medium" unit="bytes"/>
 <minimumPolicedUnit qualitatively="small" unit="bytes"/>
 </packetSize>
 <bitRate qualitatively="high" variability="variable">
 <peakRate qualitatively="medium" unit="bit/s"/>
 <averageRate qualitatively="medium" unit="bit/s"/>
 </bitRate>
 <flow value="greedy"/>
 </TrafficSpecification>
 <AQUILASpecification>
 <serviceID value="PVBR"/>
 <BSP unit="bytes">2000</BSP>
 <BSS unit="bytes">2048</BSS>
 <minPU unit="bytes">60</minPU>
 <maxPS unit="bytes">1500</maxPS>
 <PR unit="bit/s">28800</PR>
 <SR unit="bit/s">19200</SR>
 </AQUILASpecification>
 </Option>
 <Option optionID="2" description="video medium quality scenario"
NetworkSpeed="ISDN / Dual ISDN" TransportProtocol="TCP">
 <SessionCharacteristic>
 <name>video quality</name>
 <semanticalGroup type="UserFriendly" language="en">
 <description>Video quality</description>
 <qualifier>medium quality (64kBits/s)</qualifier>
 </semanticalGroup>
 <semanticalGroup type="UserFriendly" language="de">
 <description>Video-Qualität</description>
 <qualifier>mittlere Qualität (64kBit/s)</qualifier>
 </semanticalGroup>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 92 of 99

 </SessionCharacteristic>
 <TrafficSpecification>
 <type type="elastic"/>
 <duration value="longLiving"/>
 <adaptivity value="false"/>
 <burstiness value="true"/>
 <packetSize qualitatively="medium" variability="variable">
 <averagePacketSize qualitatively="medium" unit="bytes"/>
 <maximumPacketSize qualitatively="big" unit="bytes"/>
 <minimumPolicedUnit qualitatively="medium" unit="bytes"/>
 </packetSize>
 <bitRate qualitatively="high" variability="variable">
 <peakRate qualitatively="high" unit="bit/s"/>
 <averageRate qualitatively="medium" unit="bit/s"/>
 </bitRate>
 <flow value="greedy"/>
 </TrafficSpecification>
 <AQUILASpecification>
 <serviceID value="PVBR"/>
 <BSP unit="bytes">2000</BSP>
 <BSS unit="bytes">4048</BSS>
 <minPU unit="bytes">60</minPU>
 <maxPS unit="bytes">1500</maxPS>
 <PR unit="bit/s">64000</PR>
 <SR unit="bit/s">48000</SR>
 </AQUILASpecification>

 </Option>

 <Option optionID="3" description="video high quality scenario" NetworkSpeed="Cable
Modem / DSL / LAN" TransportProtocol="TCP">
 <SessionCharacteristic>
 <name>video quality</name>
 <semanticalGroup type="UserFriendly" language="en">
 <description>Video quality</description>
 <qualifier>high quality (160kBits/s)</qualifier>
 </semanticalGroup>
 <semanticalGroup type="UserFriendly" language="de">
 <description>Video-Qualität</description>
 <qualifier>hohe Qualität (160kBit/s)</qualifier>
 </semanticalGroup>
 </SessionCharacteristic>
 <TrafficSpecification>
 <type type="elastic"/>
 <duration value="longLiving"/>
 <adaptivity value="false"/>
 <burstiness value="true"/>
 <packetSize qualitatively="big" variability="variable">
 <averagePacketSize qualitatively="big" unit="bytes"/>
 <maximumPacketSize qualitatively="veryBig" unit="bytes"/>
 <minimumPolicedUnit qualitatively="medium" unit="bytes"/>
 </packetSize>
 <bitRate qualitatively="high" variability="variable">
 <peakRate qualitatively="high" unit="bit/s"/>
 <averageRate qualitatively="high" unit="bit/s"/>
 </bitRate>
 <flow value="greedy"/>
 </TrafficSpecification>
 <AQUILASpecification>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 93 of 99

 <serviceID value="PVBR"/>
 <BSP unit="bytes">2000</BSP>
 <BSS unit="bytes">5120</BSS>
 <minPU unit="bytes">60</minPU>
 <maxPS unit="bytes">1500</maxPS>
 <PR unit="bit/s">160000</PR>
 <SR unit="bit/s">75000</SR>
 </AQUILASpecification>
 </Option>
</ServiceComponentProfile>

EAT Script

EATScript.dtd

<!--
 Title: EAT Script DTD<p>
 Description: Script for the EAT<p>
 Copyright: Copyright (c) Falk Fuenfstueck<p>
 Company: TUD<p>
 @author Falk Fuenfstueck
 @version 2nd trial 1.6 08/05/2002
-->

<!ELEMENT EATScript (Import?,(Login|Request|Release|Logout)*)>
<!ELEMENT Import (ImportLogin,ImportRequest*)*>
<!ELEMENT ImportLogin EMPTY>
<!ATTLIST ImportLogin
 LoginName ID #REQUIRED
 Password CDATA #REQUIRED
>
<!ELEMENT ImportRequest EMPTY>
<!ATTLIST ImportRequest

 LoginName IDREF #REQUIRED

 RequestId ID #REQUIRED
>
<!ELEMENT Login EMPTY>
<!ATTLIST Login
 LoginName ID #REQUIRED
 Password CDATA #REQUIRED
>
<!ELEMENT Request (RequestSpec+)>
<!ATTLIST Request
 LoginName IDREF #REQUIRED
 RequestId ID #REQUIRED
 ProxyId CDATA #IMPLIED
>
<!ELEMENT RequestSpec (NetworkService,SLS)>
<!ELEMENT NetworkService EMPTY>
<!ATTLIST NetworkService
 ServiceId (PCBR | PVBR | PMM | PMC | STD | CUSTOM) "STD"
>
<!ELEMENT SLS (Scope,Flow,TrafficSpec,QoSSpec?,Schedule?)>
<!ELEMENT Scope EMPTY>
<!ATTLIST Scope

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 94 of 99

 ReservationStyle (p2p | p2a | p2m | a2p) "p2p"
>
<!ELEMENT Flow (Source,Destination,ProtocolId,DSCP)>
<!ELEMENT TrafficSpec (PR,BSP,SR,BSS,m,M)>
<!ELEMENT QoSSpec (MaxDelay,MaxJitter,MaxLoss,BwGuarantee,Ordering)>
<!ELEMENT Schedule (DateTime,Duration,Idle,Cycles)>
<!ELEMENT Source (Address)>
<!ELEMENT Destination (Address)>
<!ELEMENT ProtocolId (#PCDATA)>
<!ELEMENT DSCP (#PCDATA)>
<!ELEMENT Address (IPAddress,NetMask,LowerPortNumber,UpperPortNumber)>
<!ELEMENT IPAddress (#PCDATA)>
<!ELEMENT NetMask (#PCDATA)>
<!ELEMENT LowerPortNumber (#PCDATA)>
<!ELEMENT UpperPortNumber (#PCDATA)>
<!ELEMENT PR (#PCDATA)>
<!ATTLIST PR
 Unit CDATA #FIXED "bit/s"
>
<!ELEMENT BSP (#PCDATA)>
<!ATTLIST BSP
 Unit CDATA #FIXED "bytes"
>
<!ELEMENT SR (#PCDATA)>
<!ATTLIST SR
 Unit CDATA #FIXED "bit/s"
>
<!ELEMENT BSS (#PCDATA)>
<!ATTLIST BSS
 Unit CDATA #FIXED "bytes"
>
<!ELEMENT m (#PCDATA)>
<!ATTLIST m
 Unit CDATA #FIXED "bytes"
>
<!ELEMENT M (#PCDATA)>
<!ATTLIST M
 Unit CDATA #FIXED "bytes"
>
<!ELEMENT MaxDelay (#PCDATA)>
<!ATTLIST MaxDelay
 Unit CDATA #FIXED "ms"
>
<!ELEMENT MaxJitter (#PCDATA)>
<!ATTLIST MaxJitter

 Unit CDATA #FIXED "percent"

>
<!ELEMENT MaxLoss (#PCDATA)>
<!ATTLIST MaxLoss
 Unit CDATA #FIXED "percent"
>
<!ELEMENT BwGuarantee (#PCDATA)>
<!ATTLIST BwGuarantee
 Unit CDATA #FIXED "percent"
>
<!ELEMENT Ordering EMPTY>
<!ATTLIST Ordering

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 95 of 99

 PacketOrdering (true | false) "true"
>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Duration (#PCDATA)>
<!ELEMENT Idle (#PCDATA)>
<!ELEMENT Cycles (#PCDATA)>
<!ELEMENT Release EMPTY>
<!ATTLIST Release
 RequestId IDREF #REQUIRED
>
<!ELEMENT Logout EMPTY>
<!ATTLIST Logout
 LoginName IDREF #REQUIRED
>

Example.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE EATScript SYSTEM "../dtd/EATScript.dtd">
<EATScript>
 <!-- Login user wi: -->
 <Login LoginName="wi" Password="geheim"/>
 <!-- First request is for PMC: -->
 <Request LoginName="wi" RequestId="wi01" ProxyId="2">
 <RequestSpec>
 <NetworkService ServiceId="PMC"/>
 <SLS>
 <Scope ReservationStyle="p2a"/>
 <Flow>
 <Source>
 <Address>
 <IPAddress>192.168.94.0</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Source>
 <Destination>
 <Address>
 <IPAddress>-1</IPAddress>
 <NetMask>-1</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Destination>
 <ProtocolId>0</ProtocolId>
 <DSCP>0</DSCP>
 </Flow>
 <TrafficSpec>
 <PR Unit="bit/s">100</PR>
 <BSP Unit="bytes">1024</BSP>
 <SR Unit="bit/s">50</SR>
 <BSS Unit="bytes">1000</BSS>

 <m Unit="bytes">40</m>

 <M Unit="bytes">512</M>
 </TrafficSpec>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 96 of 99

 <Schedule>
 <DateTime>0</DateTime>
 <Duration>0</Duration>
 <Idle>0</Idle>
 <Cycles>0</Cycles>
 </Schedule>
 </SLS>
 </RequestSpec>
 </Request>
 <!-- Second request is for PMM (bidirectional): -->
 <Request LoginName="wi" RequestId="wi02">
 <RequestSpec>
 <NetworkService ServiceId="PMM"/>
 <SLS>
 <Scope ReservationStyle="p2p"/>
 <Flow>
 <Source>
 <Address>
 <IPAddress>192.168.94.0</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Source>
 <Destination>
 <Address>
 <IPAddress>192.168.95.0</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Destination>
 <ProtocolId>0</ProtocolId>
 <DSCP>0</DSCP>
 </Flow>
 <TrafficSpec>
 <PR Unit="bit/s">-1</PR>
 <BSP Unit="bytes">-1</BSP>
 <SR Unit="bit/s">1000</SR>
 <BSS Unit="bytes">-1</BSS>
 <m Unit="bytes">40</m>
 <M Unit="bytes">512</M>
 </TrafficSpec>
 <Schedule>
 <DateTime>0</DateTime>
 <Duration>0</Duration>
 <Idle>0</Idle>
 <Cycles>0</Cycles>
 </Schedule>
 </SLS>
 </RequestSpec>
 <RequestSpec>
 <NetworkService ServiceId="PMM"/>
 <SLS>
 <Scope ReservationStyle="p2p"/>
 <Flow>
 <Source>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 97 of 99

 <Address>
 <IPAddress>192.168.95.0</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Source>

 <Destination>

 <Address>
 <IPAddress>192.168.94.0</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 <LowerPortNumber>0</LowerPortNumber>
 <UpperPortNumber>0</UpperPortNumber>
 </Address>
 </Destination>
 <ProtocolId>0</ProtocolId>
 <DSCP>0</DSCP>
 </Flow>
 <TrafficSpec>
 <PR Unit="bit/s">-1</PR>
 <BSP Unit="bytes">-1</BSP>
 <SR Unit="bit/s">1000</SR>
 <BSS Unit="bytes">-1</BSS>
 <m Unit="bytes">40</m>
 <M Unit="bytes">512</M>
 </TrafficSpec>
 <Schedule>
 <DateTime>0</DateTime>
 <Duration>0</Duration>
 <Idle>0</Idle>
 <Cycles>0</Cycles>
 </Schedule>
 </SLS>
 </RequestSpec>
 </Request>
 <!-- Release the first reservation: -->
 <Release RequestId="wi01"/>
</EATScript>

Example1.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE EATScript SYSTEM "../dtd/EATScript.dtd">
<EATScript>
 <!-- Re-login and re-identify the second request: -->
 <Import>
 <ImportLogin LoginName="wi" Password="geheim"/>
 <ImportRequest LoginName="wi" RequestId="wi02"/>
 </Import>
 <!-- Release the second reservation: -->
 <Release RequestId="wi02"/>
 <!-- May be logout the user -->
 <Logout LoginName="wi"/>
</EATScript>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 98 of 99

EAT & Proxy configuration

eat.dtd

<!--
 Title: EAT settings DTD<p>
 Description: Settings for the EAT<p>
 Copyright: Copyright (c) Falk Fuenfstueck<p>
 Company: TUD<p>
 @author Falk Fuenfstueck
 @version 2nd trial 1.1 23/01/02
-->

<!ELEMENT EATSettings (Database?,ApplicationProfiles)>

<!ATTLIST EATSettings

 ACAName CDATA #REQUIRED
>
<!ELEMENT Database EMPTY>
<!ATTLIST Database
 URL CDATA #REQUIRED
 User CDATA #IMPLIED
 Password CDATA #IMPLIED
>
<!ELEMENT ApplicationProfiles (Profile)*>
<!ATTLIST ApplicationProfiles
 Path CDATA #REQUIRED
>
<!ELEMENT Profile (#PCDATA)>

Example: eat_dresden.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE EATSettings SYSTEM "../dtd/eat.dtd">
<EATSettings ACAName="aca_dresden">
 <Database URL="mysql://141.76.72.113/reservation_history" User="root"/>
 <ApplicationProfiles Path="cn=appProfile,cn=eat,cn=rcl">
 <Profile>NetMeeting_3.01_AppProfile_v01</Profile>
 <Profile>OIDS-Game_AppProfile_v01</Profile>
 <Profile>RealSystem_8.5_AppProfile_v01</Profile>
 </ApplicationProfiles>
</EATSettings>

proxy.dtd

<!--
 Title: Proxy settings DTD<p>
 Description: Settings for App Proxy<p>
 Copyright: Copyright (c) Falk Fuenfstueck<p>
 Company: TUD<p>
 @author Falk Fuenfstueck
 @version 2nd trial 1.2 29/05/02
-->

<!ELEMENT ProxySettings (ProxyID,Protocol,FullName?,ControlPort?)>

AQUILA

IST-1999-10077-WP2.2-TUD-2203-PU-R/b1

User Guide for End-user Application Toolkit

 Page 99 of 99

<!ATTLIST ProxySettings
 EATName CDATA #REQUIRED
>
<!ELEMENT ProxyID (#PCDATA)>

<!-- Protocol corresponds to the protocol name in the application profile AND the
protocol description in the proxy.idl -->
<!ELEMENT Protocol (#PCDATA)>

<!ELEMENT FullName (#PCDATA)>
<!ELEMENT ControlPort (#PCDATA)>

Example: sip_dresden.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE ProxySettings SYSTEM "../dtd/proxy.dtd">
<ProxySettings EATName="eat_dresden">
 <ProxyID>1</ProxyID>
 <Protocol>SIP</Protocol>
 <FullName>SIP Proxy</FullName>
 <ControlPort>5060</ControlPort>
</ProxySettings>

