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Abstract  

The Differentiated Service architecture is proposed as a
scalable approach to QoS for IP networks. Therefore it is
based on the aggregate (per class) scheduling of packets, but
it aims at providing QoS to single flows. In particular the
Expedited Forwarding (EF) Per Hop Behavior (PHB) and the
related Premium Service have been defined in order to
provide determinist QoS guarantees to IP flows: zero loss and
very low delay and jitter. Hence a possible approach to
characterize and to dimension a network using the EF PHB is
the worst case analysis. In this work we propose a worst case
analysis which provides bounds to the queuing delay for a
class of network topologies. Our results are compared with
similar available results, which provide "looser" bounds. The
comparison with simulation results shows that the bound is
not enough tight to be of practical use. We justify the reason
for this behavior and indicate directions for further
improvements.

1. Introduction

The Differentiated Services (Diffserv) model has been
proposed within the IETF [1] to be a scalable solution to
provide end-to-end Quality of Service (QoS). It defines a set
of packet forwarding behaviors (called per-hop behaviors or
PHBs) and provides a sort of service differentiation for large
aggregates of traffic on the basis of few classes. With the
exception of policing and shaping at network boundaries, the
only actions needed to be handled in the forwarding path are
the packet classification into one or few queues and the
packet scheduling according to proper rules.

Among the proposed PHBs, the EF PHB ([3]) should
provide no loss, low latency and jitter and could be used to
build a low delay, assured bandwidth end-to-end service.
Such a service appears to the endpoints like a point-to-point
connection or a “Virtual Leased Line” (VLL). This service
has also been described and defined as Premium service ([2]).

According to [2], premium traffic should be limited and
shaped to a contracted peak-rate and packets should move
through the network with almost no queuing delay. To build
such a service, two components are required:
- nodes must be configured so that the aggregate flows have

a minimum service rate independent of the dynamic state
of the node;

- the input flows should be limited and shaped to a
contracted peak-rate at the network boundaries so that the
aggregate arrival rate at any node is always less than a
configured service rate.

While the first point can be solved by the guarantee of an
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appropriate per-hop-behavior (like the EF PHB), the latter
requires additional functions like flow admission and set-up
procedures and network dimensioning criteria to allocate
network resources and to configure boundary nodes.

It is not clear which criteria can be used to correctly
determinate the bandwidth that should be allocated to
accommodate all individual flows in order to provide the
requiring end-to-end QoS. It is a common belief ([4]) that in
order to provide a Premium service only a small percentage
of the total network capacity should be allocated, but how
much this percentage must be low to keep the queuing delay
bounded is not clear yet. Therefore, the open point is to
define practical criteria to allocate network resources, i.e.
bandwidth and buffers.

An approach commonly adopted consists in the study of the
end-to-end network performance in order to determine upper
bounds for packet delay on the basis of a worst case analysis.
Unfortunately, up to now definitive results in this direction
are not yet available.

The goals of this paper are:
- to briefly review the more recent contributions about

worst case analysis of packet delay in a Diffserv network,
considering the applicability limitations;

- to propose a novel approach aiming at partially
overcoming such limitations;

- to compare the worst case analytical results with those
arising from simulation of a network topology
reproducing an actual IP backbone.

It is to be observed that, although our approach leads to
results closer to those arising from practical cases, it still
actually provides an “upper bound” of the worst case of
packet delay. In some topologies such a bound can be much
higher than the actual worst case, so it would lead to a great
inefficiency in bandwidth usage if it were used as an
allocation rule. In the final part of the paper we discuss the
reason of this discrepancy and we give some guidelines to
remove such an approximation.

In Sec. 2, the definition of the EF PHB and the relationship
between the EF PHB and the “Premium service” is presented
and the analytical approaches available in literature for the
evaluation of the worst case delay are discussed. In Sec. 3
and 4 our approach is presented and results are discussed.
Finally, Sec. 5 deals with the guidelines for future research
and investigations in the field of worst case analysis.

2. EF PHB definition and state of art of “worst case
delay” analysis

The EF PHB is defined as a forwarding treatment where the
departure rate of the aggregate EF packets must equal or



exceed a configurable rate (i.e. a fraction of the link
bandwidth). This constraint must apply within a very short
time interval, equal to the time it takes to send an MTU
packet at the configured rate. Therefore if the link is shared
with other aggregates, the configured rate cannot exceed the
50% of the output link bandwidth.

The RFC 2598 [3] describes a Premium service, which aims
to provide no loss and negligible delay and jitter. It is
composed of two logical components: 1) the EF PHB; 2)
traffic conditioning at network edge (and resource allocation).

The idea for traffic conditioning at network edge is to
control the input traffic so that “at every transit node, the
aggregate maximum arrival rate is less than the aggregate
minimum departure rate”. This condition should guarantee
that no queuing is needed at interior nodes. The problem is
that the concept expressed in the previous definition is very
loose. The RFC 2598 does not provide additional information
on allocation strategies and on buffer dimensioning.

One should answer the following two questions: i) how
much traffic can be admitted at network edge and at a generic
network link? and ii) which is the needed buffer size in a
Diffserv router?

The responses to the previous questions should take into
account the sequence of “hops” that are crossed by the traffic,
because, due to the aggregate scheduling, the traffic
characteristics of the input flows are modified by the
multiplexing with other flows on the output links on each
crossed hop. We refer to this problem as “multi-stage”
analysis.

We give a practical example to clarify the degradation of the
traffic characteristic of a flow in a the multiplexing process.
Assume that a set of input flows is policed (i.e. by a token
bucket) at the peak rate. They of course are “allowed” not to
emit packets at a given time. We denote this flow as Peak
Rate Regulated (PRR) flows. Let us consider (see Fig. 1) a
set of PRR flows entering a first stage multiplexer, we want
to compare the arrival pattern of a given flow Fx on its input
link with the departure pattern of the same flow on the exit
link. We assume that N flows, coming from different input
links, are multiplexed on the output link. N packets can arrive
in the same time, so that they will be queued in the buffer for
transmission on the output link (generating a burst of N
packets). At this point, it can happen that N-1 flows become
silent and only one flow (Fx) emits a packet at its peak rate.
Therefore a packet of the flow Fx experiences a “large” delay
while the following packet of the same flow experiences no

delay and it results in a in a narrowing of the inter-departure
time of packets of the same flow. One can evaluate the worst
case departure pattern of a given flow taking into account the
maximum delay in the multiplexer buffer. The worst-case
combination of these patterns at the next multiplexing stages
must be taken into account to evaluate the maximum packet
bursts the buffer requirements and consequently the
maximum delays.

The problem of the multistage analysis is dealt with in some
recent contributions. In [5] a discussion on buffer
requirements is given and the maximum burst of packets that
can appear on a generic link is evaluated. The maximum
burst length in a network link outgoing from a router is
simply evaluated by adding the maximum burst lengths
appearing in the input links. This procedure is iterated for any
stage. Assuming a fan-in (i.e. number of input lines) equal to
i and assuming a perfectly regulated traffic on the input lines
(burst length=1), the burst length b at stage h will be given
by: b(i,h)=ih. Considering that such a burst is composed of
packets belonging to different flows, the burst length would
be limited by the number N of different flows that share a
link. This procedure for aggregating the burst lengths is not
general, as it does not take into account the worst case
combination of arrival patterns that can happen when a subset
of the flows sharing a link is extracted at the next
multiplexing stage.

A more general evaluation of delay bounds for aggregate
traffic applicable to EF PHB is provided in [6], where some
mechanisms leading to the increase of burst length (and
delay) are described. As pointed out in [7], the bound found
by [6] applies to a particular class of topologies, satisfying
the so called "monotonic degree" constraint. This class of
networks is derived on the basis of the definition of degree of
a link as the maximum number of hops that have been
crossed by the flows sharing the link. A network satisfies the
monotonic degree constraint if the set of flows that share a j
degree link has only crossed links with a degree lower that j.

There are many points of contact between this paper and
[6]; the goal of both papers is to provide a bound on the delay
on one hop and to use this delay to bound the increase of flow
burstiness on the output link. While [6] bounds the delay in a
generic n-hop node of the network given the maximum load
on any link, we provide a methodology to evaluate the
maximum delay at each single node given the network
topology, the link line rates, the set of input flows, the actual
packet size. The main difference is that we also take into
account the finite speed of input lines. This allows us to give
a tighter upper bound to the maximum delay.

3. Worst case analysis

Our aim is to evaluate the minimum buffer requirements for
EF in a cascade of multiplexer ensuring deterministic zero
loss. We assume that each EF flow arrives at the 1st node
(ingress stage) from a separate input line. At the output link
of each stage a certain number of flows is directed to the
successive multiplexer while the others exit the cascade.
Fixed EF packet size (L bits) is assumed. We consider a
homogeneous scenario in the sense that, for the generic k
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Fig. 1 - Flow Fx characterization on the 1-link.



stage, all the EF input flows are assumed to have the same
characteristics. The generic EF source flow is only
characterized by its peak emission rate, as any statistical
characteristic is left out of consideration in a worst case
analysis. We further assume that at each node EF packets are
served with non-preemptive priority over non-EF ones.
MTUnonEF denotes the maximum size of non-EF packets.

As for the first stage, it is easy to show that the maximum
EF buffer occupancy is originated by the superposition of all
synchronized (zero-phased) flows. In this case the maximum
EF buffer occupancy at the first stage is given by:

Bmax,1
 = N1⋅L eq. 1

where N1 is the number of input flows.
At the successive stages the evaluation of the worst case EF

delay is somewhat more complex, as the packet clumping
phenomenon introduced by previous multiplexing stages has
to be taken into account. The minimum inter-arrival time
between successive packets of the same flow at the k stage
can decrease with k, i.e. the instantaneous peak rate get
larger. This can lead to an increase of buffer occupancy (and
queuing delay) for EF. As strict priority scheduling is
enforced between EF and non-EF packets, the maximum
queuing delay for EF packets at stage 1 is given by:

( ) 11max,
11

1max,
1max, CMTUB

C

MTU

C

LB
D nonEF

nonEF +≅+
−

= eq. 2

That is the time spent to send all previous EF packets plus
the time need for a non-EF packet that started being served
before the first EF packet arrived.

Once the maximum delay at the 1st stage Dmax,1 has been
evaluated from Bmax,1 by means of eq. 2, we can take it into
account in the characterization of the worst case arrival
pattern at the successive stage in order to evaluate the
maximum buffer occupancy Bmax,2 and the maximum queuing
delay Dmax,2 occurring at the 2nd stage. The parameters of the
2nd stage multiplexer (fan-in, link capacity) must be
considered as well. The procedure can be iterated for the
successive stages: at the generic k stage the sum of maximum
delays of previous stages is used to evaluate Bmax,k and Dmax,k.

This procedure is represented by the formulas of eq. 3,
which express Bmax,k and Dmax,k as functions ℜ B(⋅) and ℜ D(⋅)
of the maximum delays at previous stages and of the
parameters of the k multiplexer. The evaluation of ℜ B(⋅) and
ℜ D(⋅) is the goal of the following section.
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3.1. The analytical model

Consider the multiplexer model depicted in Fig. 2. Before
entering the multiplexer each single source flow crosses a
module introducing a variable delay on its packets. Such a
delay is assumed to be generally distributed and
deterministically bounded by D (sec). These modules are
representative of the network section before the multiplexer,
in other words they take into account the jitter introduced by
previous stages. D is then the maximum delay budget the

flows can cumulate in the k-1 previous stages. Fig. 2 also
shows the worst-case arrival pattern at the multiplexer, i.e.
the one that originates the maximum buffer occupancy. It is
given by the zero-phased superposition of all “per-flow worst
patterns”. The single per-flow worst pattern is built using the
maximum delay budget D to gather as many packets as
possible in front of the burst. Given such a worst pattern and
given the parameters of the multiplexer (fan-in, link
capacity), our objective is now to find the minimum buffer
size required to have deterministic zero loss, i.e. the
maximum buffer occupancy at the multiplexer. Let us now
present the adopted notation:
- L: the packet size (bits);
- C: the output link capacity;
- P: the source peak emission rate;
- T=L/P: the minimum inter-packet time of the source;
- N: the number of input flows;
- M: the number of input lines;
- Cin,tot: total input capacity, i.e. M times the single input

line capacity;
- Bmax: a bound to the max buffer occupancy at the mux;
- Dmax: a bound to the max queuing delay at the mux.

It is assumed that PN
T

L
NC ⋅=⋅> ,  which is  the  condition  for

peak rate allocation. Let us further define the following
quantities that characterize the “per-flow worst-case arrival
pattern” at the multiplexer:

- 1+



=
T

D
h : max number of packets in the front burst;

- DhTg −⋅= : time lag between the front burst and the
successive arrival.
The meaning of h and g is evidenced in Fig. 2.
We will initially assume that each single flow enters the

multiplexer from separate input lines (“single line per flow”
condition). This case is equivalent to consider infinite
capacity input lines (Cin,tot=∞). By composing all the single
per-flow worst arrival patterns under the single-line-per-flow
condition we derive the worst case arrival curve v=v∞
depicted in Fig. 3.

Successively, the effect of the finite capacity of the input
lines is taken into account, and the worst case arrival curve is
modified accordingly. The curve v∞ as evaluated in the
single-line-per-flow condition still represents an upper bound
for the arrival curve when Cin,tot is finite, and drives the
analysis in this last case.

Fig. 3 shows the arrival (v) and service (s) curves vs. time
for the multiplexer of Fig. 2 in the single line per flow
condition. The amount of EF bits which enter (v) and leave

Fig. 2 – Conceptual scheme for the analytical model.
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(s) the multiplexer are in abscissa, while time is in ordinate.
At any time the instantaneous buffer size is given by the
vertical distance v(t)-s(t), while the maximum delay is given
by the maximum horizontal distance between v(t) and s(t). In
the case depicted in the figure the EF service curve starts a
time t=0 (i.e. s(t): C⋅t+), which means that no non-EF packets
are being transmitted when the first bundle of EF packets
arrive. To be rigorous, the EF service curve in the worst case
should start at time t=MTUnonEF/C in order to account for the
conflict with a MTU sized non-EF packet. This would add
complexity to the analysis, as the service curve becomes
concave. In order to simplify the analysis, we consider an EF
service curve starting at t=0 as in Fig. 3, and we account for
the effect of the conflict with a MTU sized non-EF packet by
the additive terms MTUnonEF and MTUnonEF/C in the final
expressions of Bmax and Dmax respectively. In other words we
will consider:

CMTUDD

MTUBB

nonEF

nonEF

/*
maxmax

*
maxmax

+=

+=
eq. 4

with B*
max: and D*

max evaluated considering the EF service
curve s(t): C⋅t+. This simplification will not impact the
considerations we are going to derive from the analysis.

B*
max: and D*

max are related by eq. 5, so in the next section
we focus on the evaluation of B*

max only:

CB
C

LB
D *

max

*
max*

max ≅
−

= eq. 5

3.2. Bounds for the maximum queue size and queuing
delay at a generic stage

Returning to Fig. 3, at t=0 a number of N⋅h packets arrive
instantaneously at the multiplexer, followed at time g by N
more arrivals (point B). At time t=0 packets begin to be
served at rate C (service curve s(t)). It can be shown from the
figure that the maximum buffer occupancy can occur at time
t1=0 or t2=g according to the value of the output capacity C:

( ){ }gCLhNLhNB ⋅−⋅+⋅⋅⋅= 1,max*
max eq. 6

Further on we will modify the worst arrival curve v to take
into account that the N input packet flows enter the
multiplexer from M<N input lines, with a total input capacity
Cin,tot which is finite. Note that the maximum vertical step that
can be found in the arrival curve v is given by M⋅L, as M is
the maximum number of packets that can instantaneously

arrive at the multiplexer from the M input lines. To be
rigorous the arrival curve should appear like the dotted-line
curve in Fig. 4, as packets are assumed to arrive to the
multiplexer once they are completely stored in the buffer, i.e.
the packet arrival time is concentrated in the last bit arrival
instant. The finite input capacity implies that there is a
minimum interval (=M⋅L/Cin,tot) between successive input
packets. In the following analysis for sake of simplicity the
arrival envelope evidenced in Fig. 4 by continuos line will be
used in place of the exact curve. This will lead to a fair
over-estimate of the maximum buffer occupancy Bmax, so that
the symbol ≅ will be used in place of equality.

In order to achieve a precise evaluation of the maximum
buffer occupancy at the multiplexer two different cases must
be considered according to the input capacity Cin,tot.

Case 1: CC totin ≤, .

This case is trivial: the maximum buffer occupancy reduces
to a number of packets equal to the number of input lines, i.e.

LMB ⋅=*
max eq. 7

Case 2: CC totin >, ;

In this case, depicted in Fig. 5, the maximum buffer
capacity can hold at time t1

* or t2
*, depending on the value of

C. t1
* and t2

* represent respectively the first and second
intersection time between the curves v(t) and v∞(t) and can be
derived from the following equations:
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From eq. 8 and eq. 9 the maximum buffer occupancy is
evaluated as follows:

( ) ( ){ }*
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max ,max tBtBB = eq. 10

with:
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Note that this case includes the ‘single line per flow’ case as
a limit, because 0*

1 →t  and gt →*
2  for ∞→totinC , .

Fig. 3 - Arrival/departure curves for the ‘single line per flow’ case (Cin =

∞).
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Using some algebra, eq. 6, 7, 10, 11 can be covered by the
following eq. 12, where [x]+ = max(x,0). The eq. 8 and eq. 9
are still needed to evaluate t1

* and t2
*.
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The eq. 4, eq. 5 and eq. 12 exactly define the functions
ℜ B(⋅) and ℜ D(⋅) introduced in eq. 3.

4. Numerical Results

The worst case delay bound found in the previous section
has been computed for a sample network scenario. Such a
bound has been compared with the bound found in [6, eq.34].
It has also been compared with simulation results in order to
investigate the distance between the analytical bound and the
actual system behavior. The considered topology is depicted
in Fig. 6. It is a three-levels hierarchical symmetric network
and is aimed at representing a structured Diffserv domain
with both an external and a core section.

Traffic sources are connected by dedicated links to the Edge
Routers (ER), which in turns are connected to their respective
Core Router (CR) by links of capacity C1 = 10 Mbit/s. The
capacity of core links is C2 = 30 Mbit/s. The considered
source flows have a peak rate P = 64 Kbit/s and packet size L
= 576 bytes. The size of the queues is infinite. The considered
traffic matrix is symmetric and originate homogeneous EF
traffic load on each link. Each traffic flow enters the network
from its ingress ER and crosses 5 multiplexing stages (1 ER +

4 CR) before getting to its egress ER.
Simulations have been run by Network Simulator [8] in

order to compare the analytical bounds with the ”actual”
system behavior. In the simulations markovian on-off sources
with activity a = 0.9 and active/idle average time of Ton =
1.35 sec and Toff = 0.15 sec have been considered.

Fig. 7 shows our analytical bound (continuos line) for EF
queuing delay vs. EF load for the 5th multiplexing stage, i.e.
at the last Core Router along the flow paths. The ratio
between the EF peak rate and the link capacity (ρEF=N⋅P/C)
is the same on both external and internal links. It is varied by
varying the number of flows N on each link. In Fig. 7 the
bound given in [6, eq. 34] is also depicted (dotted line). It is
evident that both curves sharply increase with the load. As
expected, our bound remains below the Charny’s one. In facts
at each stage we take into account the effect of the finite
capacity of the input links.

In Fig. 8 our analytical bound for queuing delay has been
compared with the 99.99 percentile and the maximum
observed in simulation, over a number of packets ≅107. It is
evident that the experienced delay is much less than the
analytical bound in the whole considered load range. In
particular the empirical delay slowly increases with the load.

We observe that even if our bound is a good refinement of
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the Charny’s one, it is still very conservative. Therefore, it is
open whether these worst case bounds are suitable to be used
as the basis of an effective allocation approach. In the next
section we discuss this issue and we propose directions for
further improvements of worst case bounds.

5. Final considerations

The goal of this section is to discuss the reasons why the
experimental worst case is so far from the theoretical upper
bound derived here. Two elements have to be taken into
account
- The first element is based the consideration that the

probability of the worst case could be so low that the
worst case event can be neither achieved nor
approximated with finite simulations; we are of course
aware of this, this is an intrinsic limitation of the worst
case approach and represents the price that we have to pay
to have the zero loss guarantee.fgh

- The second element is that the evaluated bounds could be
too “loose” failing to model some important aspects; we
want to consider more in detail this aspect.

The described analyses, the one presented in this paper as
well as the one proposed in [6], use the delay on one node to
independently bound the burstiness of each single flow on the
output link. The goal is to evaluate a sort of worst case arrival
pattern, which is needed to evaluate the worst case delay at
the next multiplexing stage. If a bundle of n flows on a given
link are directed to a specific output link of the next
multiplexing stage, the worst case arrival pattern is basically
assumed as the “superposition” of the worst case arrival
patterns of the n flows considered independently (as if they
were transmitted over different links). In a realistic scenario,
several flows from each input line are multiplexed in one
output line. The worst case arrival pattern of such bundle of
input flows is quite different (let say lower) of the "sum" of
the worst case arrival patterns of a single flows.

Taking this fact into consideration, we see that the described
approach yields an upper bound tight to the worst case if, at
each multiplexing stage, only one flow from each input line is
taken as input to the next output link. As long as more flows
are extracted from each input line to be multiplexed in the
output lines the bound becomes looser.

Let us consider a generic node with M input lines and let us
suppose that n flows of each input line are multiplexed onto
the same output line; the total number of flows on that output
link is then N=M.n.

Fixed the value of N, the distance between our bound and
the real worst case depends on the values of n and M. When
n=1 (M=N), i.e. in the single line per flow assumption, our
bound tightly approximates the real worst case, as there is no
correlation between input flows. When 1<n<N, the effect of
correlation between the flows coming from the same input
line is not accounted for in the analysis. As a result, the
bound overestimates the real worst case. When n=N (M=1),
our bound is still a tight approximation. In fact, the effect of
the inter-flow correlation is completely “included” in the

effect of the finiteness of the input link capacity, which is
taken into account in our analysis. This phenomenon is
qualitatively shown in Fig. 9.

The generic quantitative evaluation of the real worst case
taking into account the flow correlation is not easy and is a
matter of further study. We have quantitative results only for
very simple scenarios. For example, assume M=4 input links
and that n=20 flows (out of 40) from each input link are
extracted to be multiplexed in the output link (N=80). Furhter
assume that the peak rate of each flow, P is 64 kbit/s and that
Cinput =  3200 Kbit/s (peak utilization = 0.8), Coutput = 6400
Kbit/s (peak utilization = 0.8). Applying Charny’s bound, we
obtain an upper bound to the maximum buffer size on the
output link buffer equal to 144 packets. If we use the
methodology described in section 3, we obtain a buffer size
of 82 packets. On the other hand, if we take into account the
actual worst case arrival pattern of the bundle of 20 flows
extracted from each input line, it can be verified that the
maximum buffer size on the output link buffer equals to 62
packets. It is possible to make the evaluation of this worst
case “by hand”, because we are at the second multiplexing
stage and the scenario is homogenous.
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