
An Adaptive Algorithm for Resource Management in a Differentiated Services
Network

E. Nikolouzou, G. Politis, P. Sampatakos, I. S. Venieris
National Technical University of Athens, Greece

National Technical University of Athens,
Department of Electrical and Computer Engineering,
9 Heroon Polytechniou str, 157 73, Athens, Greece
Telephone: +30 1 772 2551, FAX: +30 1 772 2534

E-mail: {enik, gpol, psampa}@telecom.ntua.gr, ivenieri@cc.ece.ntua.gr

Abstract-Internet is widely known for lacking any kind of
mechanism for the provisioning of Quality of Service
guarantees. An overlay Resource Control Management Layer on
top of a Differentiated Services core network is introduced for
managing and adjusting the resources among network elements.
This layer realises an algorithm which provides a dynamic
approach for resource distribution. Our experimental results
show that this algorithm can allocate network resources
according to traffic load and provide an adaptive and efficient
way for re-distributing the resources among metwork elements.

Keywords-Quality of Service, Bandwidth Brokers, Differentiated
Services, Admission Control, Resource Distribution, Resource
Control Management Layer

I. INTRODUCTION

The enormous rise in usage and popularity of Internet as well as the
introduction of new applications, such as voice, video and advanced
multimedia applications, have motivated the Internet Community
towards the research for improving the Quality of Service (QoS)
provided by today’s best effort networks.
The Differentiated Service (DiffServ) model [1,2] has become a
preferred solution, which provides a scalable means for supplying
multiple levels of service, based on handling of traffic aggregates.
This architecture achieves scalability by maintaining simple
functionality at the core network and by shifting complex
mechanisms only at the edges of the network.
Nevertheless, the DiffServ architecture does not specify any kind of
mechanism for an overall resource management and admission
control. The Internet2 project [3] proposes the Bandwidth Broker
(BB) [4] architecture that controls the resources of a domain, among
others. The proposed network architecture described in this paper is
based on the DiffServ model and the Bandwidth Broker concept. Its
objective is to enhance the original DiffServ architecture by adding a
new layer, the Resource Control Management Layer (RCML)
above it in order to provision QoS features to the customers of the
network. The RCML is basically a realisation of a distributed BB
architecture, promising scalability and efficiency characteristics.
The RCML is composed of different distributed entities organised in
a hierarchical manner, each one managing the resources assigned to
it. The algorithm that assigns the initial resources to these entities
and further reassigns them according to resource reservation
requests is the main focus of this paper.
The paper is organised as follows: Section 2 describes the overall
architecture, Section 3 proposes an algorithm for resource control
and distribution. Finally, Section 4 gives an estimation and
evaluation of the parameters of the proposed algorithm.

II. ARCHITECTURE

In this section the overall architecture will be described and the
RCML will be particularly examined.

A. Architectural Principles

The proposed architecture aims to provide an efficient way for
managing the resources available to the network. It consists of two
functional areas: the data plane that is responsible for transmitting
Internet Protocol (IP) packets and an overlay control plane, namely
the Resource Control Management Layer (RCML). The RCML
consists of three logical entities, as depicted in Fig. 1:
• The Resource Manager Agent (RMA) that is the highest

authority in an administrative domain. It is responsible for
admission control decisions and management of the network
resources. Moreover, it has the overall view of the policies
enforced in a domain, and decides for the router configuration
and management of the bilateral Service Level Agreements
(SLA) between adjacent administrative domains.

• The Access Control Agent (ACA) that basically controls the
user access to the network by performing policy control, as
well as authorisation and accounting functions. Moreover, each
ACA is assigned the task of controlling an Edge Device (ED)
i.e. configures the appropriate ED parameters after a
reservation request is admitted by the RCML.

• The End-User Application Toolkit (EAT) that provides an
interface to the end-user applications that enables them to signal
their requirements to the QoS infrastructure.

The configuration described in the paper considers only one RMA
per Internet Service Provider (ISP). In addition in this paper only
intra-domain issues are examined, while inter-domain aspects are
under research and they will be addressed in a future work.

DiffServ
Domain

RMA

ED

ACA

ED

ACA

Host Host

EAT EAT RCML

Fig. 1: Resource Control Management Layer Architecture

B. Hierarchical Structure of the RMA
In order to simplify the task of the RMA to handle the network
resources efficiently, the network is divided into sub-areas that form
a tree structure, where each sub-area is assigned its own resources.
The network administrator estimates these resources according to
traffic load forecasts and/or results retrieved by a measurement-
based platform.
It has been examined that lately the number of user requests is
dramatically increasing and a standalone management entity could
not perform well under these conditions.
Therefore, the RMA is divided in logical entities (Resource
Managers, RM) and each one of them is assigned the task of
managing the resources of a sub-area. The RCA is based on the
hierarchical structure depicted on Fig. 2.

RM

RM RM

RM RM

RML
ACA

RML
ACA

RML
ACA

RML
ACA

Fig. 2: Hierarchical Structure

Every node of the tree has none or many children and exactly one
father, except from the root node that has no father. In addition, each
leaf of the tree structure (Resource Manager Leaf, RML) is
associated to one Access Control Agent (ACA). During the start-up
configuration procedure, the RMs/RMLs are assigned their initial
resources, which are provided by a database managed by the
network administrator. These initial resources may not reflect the
actual traffic load of each sub-area, therefore, the RMs/RMLs
should be able to adjust resource assignments to real traffic
conditions, which are difficult to be forecasted and may change
during time.
Since the RMs/RMLs are distributed and need to communicate for
the re-assignment of the resources among them, the CORBA
technology [5] is adopted for the RMA implementation.
In order to keep the interactions between two nodes as simple as
possible, an event-driven model is adopted, where a child RM/RML
always requests more resources from its father or releases any
unused ones. In this way the father is continuously aware of
his current available resources in order to further distribute
them as efficiency as possible. Consistently it is provided to
the father RM a kind of dynamic and automatic updating of
the current status of his resource allocations. In this way the
implementation complexity is kept really low, without the
burden of a reverse interaction.
The algorithm that decides when a child should ask for more
resources from its father or give back the unused ones as well as the
calculation of the corresponding amount of resources is described in
the next section.

III. DESCRIPTION OF THE ALGORITHM

In this section an algorithm for resource distribution and
redistribution will be presented.

A. Algorithm mechanism
The basic mechanism of the algorithm is to handle efficiently the
cases when re-distribution of resources is needed.
This is invoked when an RML does not have enough resources to
accommodate a new user request. According to the algorithm
realised, an RML will make a request for additional resources to its
father. The child makes a request determining the minimum

additional resources needed to admit the request and an upper limit
for the resources that can accept from its father.
The father is responsible for deciding how many resources to give to
its child, depending on the amount of resources requested, the upper
limit defined by the child and the amount of its free resources. In
case, the father does not have enough resources will also make a
resource request to its father RM (of the above level). This
procedure can continue up to the root of the tree. The procedure of
finding additional resources is bottom-up, i.e. from the leaves of the
tree up to the root.

B. Initial Resource Distribution
The network administrator is responsible for defining the initial
resources to be distributed to the nodes of the tree. Each RM
distributes its resources to its children according to the initial
amounts defined. After this top-down start-up procedure, initial
resources are assigned to all nodes of the tree.
Each RM and RML is basically described by the following set of
parameters:
Rmax : upper limit of resources that can be assigned to an

RM/RML
Rtot : current resource assignment to an RM/RML
Rres : current reserved resources of an RM/RML
Rfree : currently unused (free) resources of an RM/RML
Rav : maximum resources that can be additionally assigned to

an RM/RML

The Rmax defines an upper limit for the traffic that an RM/RML can
afford.
The equations (1)-(6) describe the initial resource status of an
RM/RML as well as the relation of the resources of a father RM and
its children (f: father, c: children):
Rmax ≥ Rtot ≥ 0 (1)
Rfree = Rtot - Rres (2)
Rav = Rmax - Rtot (3)
Rf

 res = ΣRc
tot (4)

Rf max ≥ Rc
 max (5)

ΣRc
 max ≥ Rf max (6)

C. Resource Distribution
After the initialisation of the tree and the assignment of the initial set
of resources, user makes its resource reservation requests to the
EAT, which forwards these requests to the ACA. Under the
condition that the user access to the network is verified, ACA hands
over this request to the corresponding RML for admission control.
A number of additional parameters must be defined first. Fig. 3
depicts those parameters giving a more comprehensive view of the
implemented algorithm.:
Rreq : minimum resources requested from an RM/RML
Rrecv : resources actually received from a child after a request

for more resources to its father
Amax : number of max resource shifts; father RM increases the

resources of its child by Amax . Rreq
Amin : number of min resource shifts; father RM increases the

resources of its child by Amin . Rreq
Amed : number of resources shifts; father RM increases the

resources of its child by Amed . Rreq
(Amax < Amed <Amin < 1)

wL : a low limit for the free resources of the RM
wH : a high limit for the free resources of the RM

 (wL <wH < 1)

Rmax

Rtot

Rres

WH x R free

WL x R freeRfree

Fig. 3: Parameters of the Resource Distribution algorithm

As long as the RML has enough resources to accept a reservation
request, there is no need of redistribution of the resources. In case an
RML does not have efficient resources to accommodate an Rreq for a
reservation it asks more resources from its father RM, and the latter
decides how much to give back to it, Rrecv. The same procedure can
be repeated many times, up to the root of the tree.
The steps of the proposed algorithm executed by the RML after a
resource reservation request are:

1. if RRML
res + Rreq > RRML

max
then reject the request;

2. if RRML
res + Rreq <= RRML

tot
then admit request

RRML
res = RRML

res + Rreq
end then (2)

3. else if RRML
res + Rreq > RRML

tot
then calculate resources to ask from father

x =(RRML
res + Rreq) - RRML

tot
make a request to father:
RRML

av = RRML
max - RRML

tot
Rrecv = request(x , RRML

av);
if request accepted by father RM
then admit the request

change total and reserved resources:
RRML

tot = RRML
tot + Rrecv

RRML
res = RRML

res + Rreq
end then
else reject the request;

end then(3)

When a father receives a request for additional resources, request(x ,
Rav) , it calculates the actual additional resources that can return to its
child. The father will give a multiple (Amax/Amin/Amed) of the x
depending on the amount of its free resources Rfree. The upper limit
of the resources that can be assigned to, is bounded by the Rav (Rc

av
in request() below). In case a father RM can not assign to its child
not even the minimum amount of resources requested, it calls the
same request function to its corresponding father. The realisation of
the request() is given:

1. if Amax . x <= wL . Rfree
then Rrecv = min(Amax . x, Rc

av)
Rres = Rres + Rrecv
return Rrecv

end then (1)
2. else if Amed . x <= wH . Rfree

then Rrecv = min(Amed . x, Rc
av)

Rres = Rres + Rrecv
return Rrecv

end then (2)
3. else if Amin . x <= Rfree

then Rrecv = min(Amin . x, Rc
av)

Rres = Rres + Rrecv
return Rrecv

end then (3)
4. else ask resources from its father

x’ = (Rres + x) - Rtot
R’

recv = request(x’, Rav)
if request accepted by father
then

Rtot = Rtot + R’
recv

goto step(1)
end then
else reject the request;

end then (4);

The wL and the wH define two limits for the free resources of an RM.
Depending on the ration of the reservation request to a limit of the
free resources, an appropriate multiple of the requested resources is
given. In case that a multiple of the requested resources is less than
the low level of free resources, then the Amax of the requested
resources is given. That implies that requested resources are really
very small in comparison to the free resources of the RM.

D. Resources Release
When a user makes a release request to the RML, the latter deletes
the reservation and checks whether or not it can release any unused
resources to its father. In order to take such decision an additional set
of variables are defined:
 l : a low watermark, l<1
Rres : reserved resources before the deletion of reservation
R’res : reserved resources after the deletion of reservation
Rrel : resources to be released to the upper level
a : a < 1

The low watermark, l, is used to check the current status of reserved
resources of an RM/RML. In case the reserved resources are below
this watermark, this indicates that there are unused resources that
should be given to the upper level. The amount of released resources
should be calculated considering the trade-off between giving as
much as possible and keeping resources for future use.
The algorithm for deciding and calculating the resources to be
released is:

1. After the deletion of reservation reserved resources are
R’res

2. if (R’res < RL) and (Rres > RL)
then

calculate how much to release to the upper level
The new reserved resources after the release must
be between the R’tot and l . R’tot:

• R’res = a . (R’tot + l . R’tot)
• R’tot = Rtot – R’rel

From above: R’rel = Rtot - Rres / (a(1 + l)
release R’rel

 end then (2)
3. else do not relase resources.

The value of a, determines indirectly the actual amount of resources
released. In fact, it specifies the desired revel of reserved resources in
the new state of total resources of an RM/RML (after an amount of
resources has been released, i.e. R’rel).

IV. SIMULATION

A. Simulation methodology
Simulations were carried out in a Pentium III PC with the help of a
special tool that has been developed in JAVA programming
language. In order to understand fully the behavior of the algorithm,

a tree structure has been defined and implemented, depicted in Fig.
4. The actual tree structure does not play a crucial role for the study
of the proposed algorithm.

0

1 5

3 42

6

Fig. 4: Simulation topology

A simulation experiment consists of a random process of reservation
request arrivals. Each request arriving to an RML may be admitted
or rejected according to the specifics of the algorithm in question.
The inter-arrival time of reservation request follows an exponential
model, while the size of the resources requested follows a random
model. A reservation request may arrive to each leaf node with the
same probability. The reservation requests may have a capacity of
64, 128 or 512Kbps. More precisely, the capacity specifies the peak
rate of reservation requests originated by the host. Other details that
specify the nature of the requests e.g. average rate, are omitted since
they are not necessary for the description of the objectives of the
implemented algorithm.
During simulations the average utilization of each node of the tree
and the number of interactions (request() calls) invoked are
measured, using different algorithm configurations.

B. Results
A number of simulations have been carried out, where the behaviour
of the algorithm has been examined under different set of values of
parameters. TABLE I summarises those parameters and assigns to
them a possible value.

TABLE I
MAIN VARIABLES OF THE ALGORITH

Variable Value
Amax 5(3-8)
Amed 3(2-4)
Amin 1(1-3)
wL 0,2
wH 0,6
l 0,5-0,7
a 0,5

We have examined our algorithm under two basic cases: with initial
resources, Rtot and with zero initial Rtot resources. The second
condition can be preferred when there are not actual forecasts of the
traffic load of the sub-areas of the network, so resources are
distributed according to the demand. The root of the tree only has an
initial Rtot.
Primarily we have examined the variation of Rtot and Rres in time for
all the RMs/RMLs of the tree, changing the values of the parameters
in TABLE I for both situations. In general the algorithm offers an
exceptional adaptability as indicated in Fig. 4 for an RML. The
adaptability of Rtot to the reserved resources, Rres, depends mainly on
the values of Amax and l. The greater the value of Amax the less
adaptive the algorithm becomes, since a greater amount of resources
will be re-assigned to a child after a request() call. The value of l
determines the level that resource release must be, meaning that the

greater its value is, the sooner unused resources will be released to
the upper level.

0

5

10

15

20

25

0 200 400 600 800 1000 1200
Time (min)

R
es

ou
rc

es
 (M

B
ps

)

Rres
Rtot

Fig. 5: Status of Resources of a RML

In sequence the number of interactions among all nodes of the tree
was examined for different values of Amax, for both cases. As
depicted in Fig. 5 the greater the value of Amax the smaller the
number of interactions for both cases. The zero initial resources
may provide generally an additional efficiency and adaptability, but
in the beginning of resource reservation phase every new reservation
request invokes a set of sequential request() calls from the RML up
to the root of the tree. That justifies the large deviation of the number
of interactions among the two cases.

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9Amax

N
um

be
r o

f i
nt

er
ac

tio
ns

zero initial resources
with initial resources

Fig. 6: Number of interactions in relation to Amax

Another crucial characteristic for the performance of the proposed
algorithm is the utilisation of the network resources. The average
utilisation has been measured for the both cases, varying the value of
Amax, as illustrated in Fig. 6. The algorithm really provides a high
utilisation, which is inversely proportional to the value of Amax.

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8Amax

U
til

isa
tio

n zero initial resources
with initial resources

Fig. 7: Utilisation in relation to Amax

The current utilisation of resources of each node depends also
directly on the value of l, since l composes an under bound for the
utilisation.
It has been also examined the response of the algorithm to the
modification of values of the other parameters. Amin, Amed, wH and wL
also influence the utilisation and the number of interactions in the
same way as Amax, but they have a smaller impact than Amax. In
addition the behaviour of the parameter a is identical to that of l,
since they both determine the state that release of resources should
take place.
Summarising, there is trade-off between the utilisation of network
resources and the interactions between the nodes of the tree. When
the main goal of the implementation is a small number of
interactions among the remote nodes for improving the
performance, then a relatively large value of Amax is required.
Consequently, a smaller utilisation of network resources is achieved.
It depends also on the network administrator to tune appropriately
the value of Amax and the other parameters in order to achieve the
desired performance.

V. CONCLUSIONS

The overall architecture presented in this paper addresses the
problem of QoS provisioning in IP networks, providing a distributed
BB architecture. The RCML is introduced and is responsible for the
handling of the reservation requests, performing policy-based
admission control, configuring the network in a top-down approach,
managing the network resources and dynamically redistributing
them among the network elements.
This paper implements and evaluates the algorithm used by the
RCML for distribution and re-distribution of resources of the
underlying network. The proposed algorithm provides a high
performance and a great adaptability, even in a highly random traffic
model, while the network resources are used really efficiently.

ACKNOWLEDGMENT

This work was performed in the framework of IST Project
AQUILA (Adaptive Resource Control for QoS Using an IP-based
Layered Architecture - IST-1999-10077) [6] funded in part by the
EU. The authors wish to express their gratitude to the other
members of the Aquila Consortium for valuable discussions.

REFERENCES

[1] S. Blake et al., “An Architecture for Differentiated
Services”, RFC 2475

 [2] K. Nichols, V. Jacobson and L. Zhang, “A Two-bit
Differentiated Services Architecture for the Internet”,
RFC 2638

[3] Teitelbaum et al. “Internet2 QBone: Building a Testbed
for Differentiated Services”, IEEE Network,
September/October 1999, Vol.13, No.5, pg. 8-16.

 [4] Neilson, R.; Wheeler, J.; Reichmeyer, F.; Hares, S.: A
Discussion of Bandwidth Broker Requirements for
Internet2 Qbone Deployment, Internet2 Qbone BB
advisory Council, August 1999.

 [5] CORBA/IIOP2.3.1.Specification.
http://www.omg.org/corba/cichpter.html

[6] Aquila project: http://www-st.inf.tu-dresden.de/aquila/

