
Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 1

Evaluation of an Algorithm for Dynamic Resource
Distribution in a Differentiated Services Network

E.G. Nikolouzou, P. D. Sampatakos, I. S. Venieris
National Technical University of Athens, Greece

National Technical University of Athens
School of Electrical and Computer Engineering

Telecommunications Laboratory
9 Heroon Polytechniou str, 15773 Athens, Greece

e-mail: {enik, psampa}@ telecom.ntua.gr,
ivenieri@cc.ece.ntua.gr

Abstract. New applications have been introduced to the today’s “best-effort”
IP networks having different bandwidth and delay guarantee requirements. The
IETF is currently focused on Differentiated Services as the architecture to
provide Quality of Service to IP networks. Towards this effort, an overlay
Resource Control Layer on top of a Differentiated Services core network is
introduced in this paper, in order to provide a simple control plane architecture
that enables the overall handling of network resources and the configuration of
network elements in a domain. Therefore, a dynamic algorithm is proposed for
that layer to manage, adjust and distribute resources in an efficient and
dynamical way. The simulation results show that this algorithm provides a
significant improvement in bandwidth assurance and utilization of network
resources compared with a static resource assignment approach, keeping at the
same time complexity at a low level.

INTRODUCTION

The Internet today provides a best-effort architecture, which is basically ideal for
elastic applications, such as e-mail and file transfer. The network traffic though has
increased as the number of users and applications has also increased. Moreover, the
Internet traffic has also changed in character; new bandwidth-demanding and delay-
sensitive applications (voice-over-IP, IP-telephony, video-conferencing) require or at
least benefit from Quality of Service (QoS) [1,2] or other form of prioritisation that
guarantees an Internet connection. Increasing bandwidth is not always sufficient to
accommodate these increased demands. QoS mechanisms provide expected and
predefined service guarantees by better managing the available bandwidth.

The Differentiated Services (DiffServ) architecture [3,4,5,6] is nowadays the
preferred architecture, which can address quality of service issues in IP networks. It
provides a coarse and simple way to categorize and prioritize network traffic (flow)
aggregates, leaving complexity at the “edges” and keeping the “core” network simple

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 2

enabling its scalability. Edge devices (ED) in this architecture perform packet
classification, policing, shaping and marking in order to ensure that individual user’s
traffic conforms to the specified traffic profiles and aggregate traffic into a small
number of prioritized classes. Core routers treat packet aggregates with Per-Hop-
Behavior (PHB) [7,8] according to their markings. PHB is the forwarding treatment
that a packet receives at a network node. The concept of the Bandwidth Broker (BB)
Architecture [9,10] was proposed by Internet2 in order to provide an overall resource
management, policy-based admission control and configuration of specific network
elements (leaf, core and border routers).

Our proposed architecture is based on the DiffServ and BB [11,12] concept. It is
basically a realization of a distributed BB architecture, promising scalability and
efficiency. Consequently, an additional layer on “top” of the DiffServ architecture is
realized, the Resource Control Layer (RCL) as described in the [13]. The RCL is
composed of different distributed entities each one assigned a specific task. The
algorithm realized and evaluated in this paper is responsible for the resource
management performed by the RCL. The rest of the paper is structured as follows: in
the following part an outline of the proposed architecture is presented. In the last
section, the implemented algorithm is shortly described and evaluated.

MOTIVATION & PROPOSED ARCHITECTURE

The architecture proposed aims at an efficient management and distribution of
resources between the different nodes of a DiffServ architecture. This is basically
realized by the proposed algorithm implemented in this layer, which achieves a good
utilization of network resources. The architecture is fully analyzed in [13], and here
its main functionality is described. It is composed of three logical entities. To start
with, the Resource Control Agent (RCA) is the highest control entity in an
administrative domain and is responsible for configuring the appropriate network
entities and managing the network resources. Moreover, it has the overall view of the
policies enforced in a domain and decides for the management of bilateral Service
Level Agreements between adjacent administrative domains. Second, the Admission
Control Agent (ACA) performs admission control based on the traffic profile between
the user and the network. In this way, it controls the access of the user to the network
and performs authorization and usage metering (accounting) functions. Last, the End-
User Application Toolkit (EAT) provides a graphical interface to end-user
applications and enables them to signal their requirements to the QoS infrastructure.
The above logical entities can be distinguished in Fig. 1.

In order the RCA entity to manage more efficiently the resources distributed
among the networks elements, a hierarchical architecture inside the RCA is proposed.
Therefore, instead of having a centralized resource management entity, a distributed
one is proposed, separating the network to sub-networks. Each sub-area has its own
initial resources, which are assigned according to traffic loads forecasts and/or results
retrieved by a measurement-based platform. The structure of the RCA is depicted in
Fig. 2.

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 3

The resources assigned to the administrative domain (root) are distributed among

the sub-areas, each one represented by a Resource Pool (RP). Moreover, each sub-
area can also be further divided into sub-areas, forming the above hierarchical
structure. Another reason for the creation of RPs is the correct management of
bottleneck links and the efficient sharing of its bandwidth between the RPs of the
lower level. The Resource Pool Leafs (RPLs) correspond to the resources assigned to
each ACA. Each ACA is based on those resources to perform admission control. The
assignment of the resources is a top-down procedure, from the root of the tree down
to the RPLs. On the left hand of the Fig. 2 is given an example of RPs creation based
on the network of Fig. 1 and on the right hand a more complicated hierarchical
structure.

ACA

EAT

Host

RCA

Data traffic

Control traffic

RCL

ED1

ED2
ED3

ED4

ACA ACA
ACA

EAT

Host

CR1

CR2

CR3

ED5

DiffServ
Domain

Fig. 1.: RCL infrastructure

RP

RP RP

RPRP

RP

root

RP

RP Resource
Pool

Domain/
backbone

(root)

Resource
Pool Leaf

10

10

10

ED1

ED2

CR1

10

10

10ED3

ED4

CR2

10
CR3 ED5

RP1

RP2

Fig. 2.: Hierarchical structure of RCA

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 4

The initial assigned resources may not correspond to actual traffic load, therefore,

the RPLs/RPs are capable of adjusting and adapting those initial resource assignments
to real traffic conditions, which are difficult to be forecasted and may change during
time.

THE ALGORITHM

The main target of the algorithm is to efficiently handle the re-distribution of
resources. This is invoked when an RPL does not have enough resources to
accommodate a new user request. Each RP and RPL is basically described by the
following set of parameters:
Rmax : upper limit of resources that can be assigned to an RP/RPL.
Rtot : current resource assignment to an RP/RPL
Rres : current reserved resources of an RP/RPL
Rfree : currently free resources of an RP/RPL
Radd : maximum resources that can be additionally assigned to an RP/RPL

The equations (1)-(6) describe the initial resource status of an RP/RPL as well as
the relation of the resources of a father RP and its children (f: father, c: children):
Rmax ≥ Rtot ≥ 0 (1)
Rfree = Rtot - Rres (2)
Radd = Rmax - Rtot (3)
Rf res = ΣRc

tot (4)
Rf

 max ≥ Rc
 max (5)

Σ Rc
 max ≥ Rf max (6)

The network administrator is responsible for defining the initial resources to be
distributed to the nodes of the tree. After this top-down start-up procedure, initial
resources are assigned to all nodes of the tree. Sequentially a user can make its
resource reservation requests to the EAT, which forwards these requests to the ACA.
Under the condition that the user access to the network is verified, ACA hands over
this request to the corresponding RPL for admission control.

According to the algorithm realized, an RPL will make a request for additional
resources to its father when its current free resources are not adequate to serve a new
request. The child makes a request and the father is responsible for deciding how
many resources to give to its child, depending on the amount of resources requested,
the upper limit defined by the child (Radd) and the amount of its free resources. In case
the father does not have enough resources will also make a resource request to its
father RP (of the above level). This procedure can continue up to the root of the tree.
The procedure of finding additional resources is bottom-up, i.e. from the leaves of the
tree up to the root.

A number of additional parameters must be defined for the realization of the
algorithm:
Rreq : minimum resources requested from an RP/RPL
Rrecv : resources actually received from a child after a request for more resources

to its father

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 5

Amax : number of max resource shifts; father RP increases the resources of its

child by Amax x Rreq
Amed : number of med resources shifts; father RP increases the resources of its

child by Amed x Rreq
Amin : number of min resource shifts; father RP increases the resources of its

child by Amin x Rreq (Amax > Amed >Amin ≥ 1)
ρL : a low limit for the free resources of the RP, ρL < 1
ρH : a high limit for the free resources of the RP, ρH <1 (ρH > ρL)

The ρL and the ρH determine two limits for the free resources of an RP. Actually a
low and a high watermark are defined corresponding to ρL x Rtot and ρH x Rtot.

As long as the RPL has enough resources to accept a reservation request, there is
no need of redistribution of the resources. In case an RPL does not have efficient
resources to accommodate an Rreq it asks more resources from its father RP, and the
latter decides how much to give back to it, Rrecv. The same procedure can be repeated
many times, up to the root of the tree. The steps of the proposed algorithm executed
by the RPL after a resource reservation request are:
1. if RRPL

res + Rreq > RRPL
max then reject the request;

2. if RRPL
res + Rreq ≤ RRPL

tot then admit request RRPL
res = RRPL

res + Rreq
 end then (2)

3. else if RRPL
res + Rreq > RRPL

tot
then calculate resources to ask from father Rask =(RRPL

res + Rreq) - RRPL
tot

 make a request to father Rrecv = request(Rask , RRPL
add);

if request accepted by father RP then admit the request change total and
reserved resources:
 RRPL

tot = RRPL
tot + Rrecv , RRPL

res = RRPL
res + Rreq end then

else reject the request; end then(3)
In case a father RP can not assign to its child not even the minimum amount of

resources requested, it requests in the same way resources from its corresponding
father. The father RP uses the following algorithm in order to calculate the resources
to give back to its child. The father RP basically compares its low and high watermark
of free resources with a multiple of the resources requested. Depending on the result
of the comparison, it gives back an appropriate multiple (Amax/Amin/Amed) of the
resources requested.
1. if Amax x Rask < ρL x Rfree then Rrecv = min(Amax x Rask, Rc

add), Rres = Rres + Rrecv

 return Rrecv end then (1)
2. else if Amed

. x Rask < ρH x Rfree then Rrecv = min(Amed x Rask, Rc
add), Rres=Rres+Rrecv

return Rrecv end then (2)
3. else if Amin x Rask < Rfree then Rrecv = min(Amin x Rask, Rc

add), Rres = Rres + Rrecv

 return Rrecv end then (3)
4. else ask resources from its father

R’ask = (Rres + Rask) - Rtot
 R’

recv = request(R’ask, Radd)
if request accepted by father then Rtot = Rtot + R’

recv , goto step(1) end then
else reject the request; end then (4);

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 6

When the ACA makes a release request to the RPL, the latter de-allocates the

corresponding resources and checks whether or not it can give back any free resources
to its father. In order to take such decision an additional set of variables are defined:

 l : a low limit of the Rtot , l<1
Rrel : requested resources to be released
R’rel : resources to be given back to the upper level
a : it determines indirectly the actual amount of resources to be returned, a<1
The low watermark, l x Rtot, is used to check the current status of reserved

resources of an RP/RPL. In case the reserved resources before the release are above
the low watermark and the resources after the release are below this watermark, then
an amount of free resources should be returned to the upper level. The purpose of this
double check of resources is to control that an RP/RPL is not actually in an initial
state, where resource reservations have just began. In that case its reserved resources
may not have yet exceeded the low watermark so that resources should not be
returned to the upper level. The amount of resources to be given back should be
calculated considering the trade-off between giving as much as possible and keeping
resources for future use. This calculation is actually based on the desired level of
reserved resources between the total resources and the low watermark. The value of a
determines this level.

The algorithm for deciding and calculating the resources to be returned is:
1. After the release: R’res = R res - Rrel
2. if (R’ res < l x Rtot) and (Rres > RL)

then have to give back resources to the upper level so that reserved resources to
be between the R’tot and l x R’tot:

R’res = a (R’tot + l x R’tot), where R’tot = Rtot – R’rel
From above: R’rel = Rtot - Rres / (a (1 + l) else do not give back resources

end then (2)

SIMULATION

Simulations were carried out in a Pentium III PC with the help of a special tool that
has been developed in JAVA programming language. In order to understand fully the
behavior of the algorithm, a tree structure has been defined and implemented, as
depicted in Fig. 3. The actual tree structure does not play a crucial role for the study
of the proposed algorithm.

A simulation experiment consists of a random process of reservation request
arrivals. Each request arriving to an RPL may be admitted or rejected according to the
specifics of the algorithm in question. The inter-arrival time of reservation requests
follows an exponential model, while the size of the resources requested have a
standard capacity of 128kbps. Each leaf node has a weight, which determines the
amount of initial resources assigned to it. Those initial resources in a real network
could have been based on some load forecasts. The offered load to the leaf nodes
differs from the one forecasted in order to prove the adaptability of the algorithm.
While the resources are distributed to nodes 1,2,3 with weights 0.5, 0.3, 0.2, the actual

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 7

offered load is correspondingly 0.5, 0.4, 0.1 for the half time of simulation time and
0.5, 0.2, 0.3 for the rest time.

0

1 2 3

0.5
0.3

0.2

Fig. 3: Simulation topology

In order to verify the performance achieved by the proposed algorithm, it is
actually compared to a static configuration, where the concept of resource pools is not
used. An amount of resources is assigned to each ACA, which do not change during
simulation. Moreover the behavior of the proposed algorithm has been examined
under different set of values of parameters. TABLE I summarizes those parameters
and assigns to them a possible value.

TABLE I

MAIN VARIABLES OF THE ALGORITHM

Variable Value
Amax 5(3-8)
Amed 3(2-4)
Amin 1(1-3)
wL 0.2(0.2-0.5)
wH 0.6(0.5-0.8)
l 0.5(0.5-0.7)
A 0.5

Primarily we have examined the variation of Rtot and Rres in time for all the

RPs/RPLs of the tree, changing the values of the parameters in TABLE I. In general
the algorithm offers an exceptional adaptability as indicated in Fig. 4 for an RPL and
Amax is set to the value of 7. The adaptability of Rtot to the reserved resources, Rres,
depends mainly on the values of Amax and l. The greater the value of Amax the less
adaptive the algorithm becomes, since a greater amount of resources will be re-
assigned to a child after a request() call. The value of l determines the level that
resource release must be, meaning that the greater its value is, the sooner unused
resources will be released to the upper level.

In sequence the number of interactions among all nodes of the tree was examined
for different values of Amax. As a result of the simulations the greater the value of
Amax the smaller the number of interactions.

Another crucial characteristic for the performance of the proposed algorithm is the
utilization of the network resources. The average utilization has been measured for
each leaf varying the value of Amax from 3 to 8, as illustrated in Fig. 5. The algorithm
really provides a high utilization, which is inversely proportional to the value of
Amax. The current utilization of resources of each node depends also directly on the
value of l, since l composes an under bound for the utilization.

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 8

0,5

1

1,5

2

2,5

3

3,5

4

0 50 100 150 200 250 300 350 400 450 500

time (sec)

R
es

ou
rc

es
(M

bp
s)

Rres
Rtot

Fig. 4: Status of Resources of a RPL

0,75

0,76

0,77

0,78

0,79

0,8

0,81

0,82

0,83

0,84

0,85

2 3 4 5 6 7 8 9

Amax

U
til

iz
at

io
n%

Rpool1
Rpool2
Rpool3

Fig. 5: Utilization in relation to Amax

It has been also examined the response of the algorithm to the modification of
values of the other parameters. Amin, Amed, wH and wL also influence the utilization
and the number of interactions in the same way as Amax, but they have a smaller
impact than Amax. In addition the behavior of the parameter a is identical to that of l,
since they both determine the state that release of resources should take place.

Finally the number of rejected resource requests has been measured for the
proposed as well as the static algorithm, as depicted in Fig. 6. The nodes 1 and 3

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 9

under the proposed algorithm invoke no rejections while node 2 (RPL2) generates a
small number of rejections. The nodes under the static algorithm generate a number of
rejections, which are proportional to the offered load. It is really obvious how the
proposed algorithm outperforms the static version, offering a really smaller number of
rejections, since it achieves a dynamic resource distribution between the leaves of the
tree.

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450 500

tim e (secs)

R
ej

ec
tio

ns

Fig. 6: Number of rejected resource requests

Summarizing, there is trade-off between the utilization of network resources and
the interactions between the nodes of the tree. When the main goal of the
implementation is a small number of interactions among the remote nodes for
improving the performance, then a relatively large value of Amax is required.
Consequently, a smaller utilization of network resources is achieved. It depends also
on the network administrator to tune appropriately the value of Amax and the other
parameters in order to achieve the desired performance. In addition it has been
verified the significant improvement in bandwidth assurance and resources utilization
of the proposed algorithm compared to a static version, which keep though the
complexity at a really low level.

CONCLUSIONS & FUTURE WORK

The proposed realized algorithm uses some techniques in order to adapt efficiently
and dynamically the resources of an RP/RPL to real traffic loads. The simulation
results prove how this algorithm outperforms a static configuration, without a
significant complexity burden.

RPL2-static

RPL3-static

RPL2 RPL1-static

Evaluation of an Algorithm for Dynamic Resource Distribution in a Differentiated Services
Network 10

A management platform is under study in order to provide a graphical interface for

the monitoring and configuration of the RPs. In addition new versions of the proposed
algorithm are planned for the future in order to examine more the role of the different
parameters as well as to tune their value more properly.

ACKNOWLEDGEMENTS

This paper is partly funded by the European research project AQUILA,
Information Societies Technology (IST) programme, IST-1999-10077. The authors
are currently engaged in the definition, implementation and evaluation of the concept
presented in this paper.

Reference

[1] Ben Teitelbaum et al, “Qbone Architecture (v1.0)”, Internet2 QoS Working
Group Draft, August 1999, Work-in-Progress.

[2] Ben Teitelbaum,Ted Hanss,“QoS Requirements for Internet2”,April 22, 1998.
[3] Black, D.; Blake, S.; Carlson, M.; Davies, E.; Wang, Z.; Weiss, W., “An

Architecture for Differentiated Services”, RFC 2475, 1998.
[4] Y. Bernet, J. Binder, S. Blake, M. Carlson, S. Keshav, E. Davies, B. Ohlman,

D. Verma, Z. Wang, W. Weiss, "A Framework for Differentiated Services",
Internet Draft, October 1998.

[5] Ben Teitelbaum, “Qbone Architecture (v1.0)”, Internet2 QoS Working Group
Draft,August,1999, http://www.internet2.edu/qos/wg/papers/qbArch/1.0/draft-
i2-qbone-arch-1.0.html.

[6] D.Grossman,"New Terminology for Diffserv",Internet-Draft,November 1999.
[7] V. Jacobson, K. Nichols, K. Poduri, "An Expedited Fowarding PHB", IETF

Proposed Standard RFC 2598, June 1999.
[8] Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski, "Assured Forwarding

PHB Group", RFC 2597, June 1999.
[9] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services

Architecture for the Internet”, RFC 2638, July 1999.
[10] R. Neilson, J. Wheeler, F. Reichmeyer, S. Hares, “A Discussion of Bandwidth

Broker Requirements for Internet2 Qbone Deployment”, Internet2 Qbone BB
advisory Council, August 1999.

[11] J. Ogawa, Y.Nomura, “A Simple Resource Management Architecture for
Differentiated Services”, Internet Society, Japan, July 2000.

[12] British Columbia Institute of technology, "CA*net II Differentiated Services-
bandwidth Broker High-Level Design", November 1998.

[13] G. Politis, P. Sampatakos, I.S. Venieris, "Design of a multi-layer bandwidth
broker architecture", Lecture Notes in Computer Science; Vol 1938, Springer
Verlag, Oct 2000.

