
Supporting QoS for Legacy Applications 1

Supporting QoS for Legacy Applications

C. Tsetsekas, S. Maniatis and I. S. Venieris

National Technical University of Athens,
Department of Electrical and Computer Engineering,

9 Heroon Polytechniou str, 15773,
Athens, Greece

{htset, sotos}@telecom.ntua.gr,
ivenieri@cc.ece.ntua.gr

Abstract. Internet is widely known for lacking any kind of mechanism for the
provisioning of Quality of Service (QoS) guarantees. The Internet community
currently concentrates its efforts on mechanisms that support QoS in various
layers of the OSI model. Apart from that, the Internet community is trying also
to define the protocols, through which applications and users will signal their
QoS requirements to the lower network layer mechanisms. The latter task, how-
ever, is not trivial, especially for legacy applications that cannot be modified
and recompiled. This paper presents a framework for a middleware component
that supports QoS for legacy applications. It mainly focuses on the support of a
proxy-based framework for the identification of flows, the measurement of ba-
sic QoS parameters and the definition of an API that can be used by middleware
components or even applications. The position of this proxy architecture in a
reference network topology and the communication with other middleware en-
tities is also discussed.

1 Introduction

The Internet has had an overwhelming effect on the way people interact and commu-
nicate. The Internet is based on the Internet Protocol (IP) that provides a simple, eas-
ily deployable and best effort in nature network service. The tremendous growth of IP
has also boosted the development of various IP-based applications that include com-
plex, quality-intensive multimedia services. As a result, the Internet community has
been heavily engaged with defining the appropriate mechanisms that will provide
Quality of Service (QoS) support for applications. It is foreseen that a proper combi-
nation of these mechanisms will eventually provide ubiquitous end-to-end QoS.

To be more specific, the Integrated Services (IntServ) [1] and the Differentiated
Services (DiffServ) [2] are two of the mechanisms proposed by IETF. In IntServ,
network resources, which are mainly defined in terms of bit rate, packet delay and
maximum transfer size, are reserved in every node along the path from the sender to
the receiver. In contrast to the IntServ model, which uses explicit resource reservation
for every flow requesting QoS, thus raising scalability concerns, the DiffServ model is

Supporting QoS for Legacy Applications 2

a simpler and straightforward architecture, which relies on prioritization of some flows
over others. However, the simplicity of the DiffServ model and its lack of mechanisms
for the systematic and automated resource allocation necessitated the introduction of
the Bandwidth Broker concept [3]. The Bandwidth Broker is a logical entity, com-
plementing the DiffServ infrastructure, which is responsible for performing policy-
based admission control, managing network resources, and configuring specific net-
work nodes, among others.

Except for the aforementioned network mechanisms, applications and users have to
be able to indicate their QoS requirements to the network entities through the proper
interface mechanisms. Currently, the Resource ReSerVation Protocol (RSVP) [4]
provides the interface to setup and control QoS in the IntServ model. There are a lot
of efforts to utilize the RSVP protocol along with other QoS technologies like Diff-
Serv. Such protocols may be invoked with the use of APIs, like the Generic QoS API
integrated in WinSock2 from Microsoft, and the QoS Application Programming Inter-
face (API) from the Internet2 community [5]. The existence of these APIs presup-
poses that the applications must be modified, and compiled again in order to take
advantage of them.

The main motivation behind this paper is the support of legacy applications. The
individual characteristic of such applications is primarily that they cannot be modified.
So they cannot directly make use of one of the aforementioned APIs. Moreover, the IP
port numbers are usually not known a priori, because they are negotiated dynamically.
In addition, any modification of the network QoS provisions during the lifetime of the
application cannot be communicated to the application, so that it cannot react to them.
In order to alleviate these inherent limitations of legacy applications, we propose to
make use of a middleware component that acts as an agent between the applications
and the network QoS entities. This paper presents the framework of the middleware
for the support of any kind of application over a QoS-enabled IP network. The main
responsibility of the middleware is to provide the mechanisms for the description and
selection of QoS parameters and the forwarding of QoS requests to the appropriate
network entities. Moreover, the paper describes to a great extent a proxy framework
for the support of fundamental operations, like the detection of new flows and the
measurement of their traffic profile, as well as additional features, like the transparent
support of RSVP, and the identification of various multimedia streams (video, audio)
within a Web session.

The paper is structured as follows. Section 2 gives a brief overview of the overall
context within which this work is being accomplished. It presents the general Aquila
[6] concept and, more specifically, the End-User Application Toolkit. Section 3 ad-
dresses the proxy framework, identifying the problems and proposing solutions. Fi-
nally, section 4 presents the conclusions.

2 The AQUILA Architecture

The Aquila project [6] aims to define, implement and evaluate an enhanced architec-
ture for dynamic end-to-end Quality of Service support over IP networks. Existing

Supporting QoS for Legacy Applications 3

approaches to QoS specified for the Internet, such as IntServ, DiffServ and MPLS are
used as a basis, and the solutions implemented are verified and tested within trials
involving end-users.

The Aquila network architecture (Figure 1) is created by the interconnection of
various administrative domains controlled by different Internet Service Providers
(ISPs). These domains are distinguished into two categories: core and access net-
works. In the core network, IP flows receive prioritized treatment over others with the
adoption of the DiffServ architecture. The access network connects hosts to the core
Internet, through Edge Routers that perform enhanced functionality compared to usual
core routers. To be more specific, in the Aquila architecture, in the Edge Router of the
ISP where an access network is connected, user packets are classified, shaped and
policed. The Edge Router also marks packets and aggregates their corresponding
flows into groups under the same DiffServ Codepoint.

Access
Network

H

H

H

EAT

Access
Network

Resource Control Layer

DiffServ Layer

H

H

H

ACA

ACA

RCA

RPool 1 RPool 2

ACA ACA

EAT

ISP

Edge
Router

Edge
Router

Figure 1: Aquila Network Architecture

The main innovation of the Aquila architecture is a new layer on top of the Diff-
Serv core ISP network, called the Resource Control Layer (RCL) [7]. The RCL is
responsible for the management of network resources. It resembles a distributed
Bandwidth Broker in the DiffServ architecture. However, this architecture extends the
Bandwidth Broker model in two aspects: it caters for scalability by logically dividing
the administrative domain in sub-areas, called Resource Pools (RPool), and it pro-
vides dynamic end-to-end support for QoS.

The Resource Pools construct a tree hierarchy of RPools. The root of this tree is the
whole administrative domain, while the leaves are the edge routers. The Resource
Control Agent (RCA) is the central entity of the RCL, responsible for the overall con-
trol of the administrative domain. The RCA operates on a long-term basis, by manag-
ing and distributing the resources of the domain to the Admission Control Agents
(ACA), by exploiting the Resource Pool concept. An ACA is associated with each
edge router of the domain, and it is always a Resource Pool Leaf. It operates on re-
quest basis, by performing policy and admission control and granting a share of re-
sources to individual flows in response to a QoS request. In order to perform admis-
sion control, it intelligently compares the requested resources with the total amount of

Supporting QoS for Legacy Applications 4

the available resources granted to it. The resource management is performed with the
aid of an intelligent algorithm that caters for the initial distribution and re-distribution
of resources during the course of the network operation [8].

The End-user Application Toolkit (EAT) [9] provides end-to-end QoS support.
Applications and end users can make their own QoS requests with the use of the EAT.
The major objective of the EAT is to provide a scalable and efficient approach for
transparent QoS support for multimedia applications. Existing commercial applica-
tions leverage the EAT functionality without the need of any modifications. Resource
reservation requests may be sent automatically, without the need of user intervention.
Therefore, the end-users are shielded from the application complexity, as well as from
QoS related aspects, such as traffic specification.

Host

Host

Host

GUIs

HTTP

HTTP

HTTP

EAT
Manager

CORBA

Converters

Application
Profiles

Repository

ProxyAPIHost

EAT

ACA
CORBA

Figure 2: The End-User Application Toolkit

The main building blocks of the EAT (Figure 2) are the EAT Manager, the Proxy
module, the Converter modules, the Application Profiles Repository, the QoS Appli-
cation Programming Interface (API) and the Graphical User Interfaces (GUIs). The
EAT Manager coordinates all other modules, to ensure the smooth operation of the
toolkit. Moreover, it is responsible for forwarding the reservation requests to the
ACA. For this purpose it utilizes an interface based on CORBA [10].

The Converter modules intelligently and automatically prepare reservations for se-
lected application sessions (e.g. a video session), with the appropriate QoS parame-
ters. In order to be able to perform such an operation, the Converters rely on the con-
cept of Application Profiles. An application profile describes the QoS requirements of
a specific application based on a Data Type Definition (DTD) scheme. The concept of
application profiles stems from the fact that each individual application can be thor-
oughly tested in order to discover its QoS requirements. After the testing of the appli-
cation, the application profile is composed by the measured parameters, using the
eXtended Markup Language (XML) format [11], and checked upon the defined DTD.
Application Profiles are stored in a repository, which is queried by the Converters
upon a QoS request.

The GUIs give the opportunity to the user to place and release reservations, as well
as to monitor the current QoS conditions, through a common web browser. The API
provides a library of functions that can be used by developers to provide QoS to new

Supporting QoS for Legacy Applications 5

applications. Finally, the Proxy module addresses the inherent problems of legacy
applications described in the introduction. The Proxy module is based on a well-
defined framework that is briefly discussed in the rest of the paper.

The EAT modules have clear and consistent interfaces among them. This enables
one module to be used outside of the context of the Aquila architecture.

3 The Proxy Framework

The Proxy module has been designed and built under the consideration of being inde-
pendent of specific architectures and operating systems. It provides an Application
Programming Interface (API) via CORBA [10] to allow any application or middle-
ware to take advantage of its functionality. Therefore, it is not adequate only for the
Aquila architecture, but for any architecture that needs support for legacy applications.

Proxy
Manager

Packet
Filter

RSVP
proxy

H323
proxy

Web
proxy

API

Figure 3: The Proxy Framework

The Proxy Framework is graphically depicted in Figure 3. The Proxy Manager is
the central entity that takes control of the overall operations. It co-ordinates all the
components of the Proxy Framework by identifying the available Proxies and by
making them available to the applications. It also keeps track of all discovered QoS
flows through a Flow Database. The entries of this database are composed of IP flows
identified from the Proxies along with measurement information.

However, the most important components of the Proxy Framework are the Appli-
cation-Level Proxies and the Packet Filter. They are described in detail in the follow-
ing paragraphs.

Application-Level Proxies

The main functionality of the Proxy includes the identification of flows that may need
QoS treatment and the measurement of their basic QoS parameters. For this purpose,
the Proxy Framework includes Application-Level Proxies that perform signaling pro-
tocol translation in an effort to extract the parameters of a flow that are important for a

Supporting QoS for Legacy Applications 6

reservation request (addresses and port numbers). A specific Application-Level Proxy
has been specified for each major protocol that is used for connection set up (SIP,
H.323, RTSP etc.). The implementation of such a Proxy is based on a generic frame-
work that specifies the interfaces it should implement and offers already established
components that make development easier.

The H.323 application proxy can serve here as an example: Currently, there are
many applications that make use of the H.323 protocols [12], like NetMeeting in
Windows platforms. The need for such a proxy stems from the fact that the ports used
for the audio and video streams are not standard, but ephemeral. The H.323 protocol
makes use of the Q.931 and H.245 signaling protocols (over TCP) to set up the RTP
and RTCP audio and video flows. The task of the Proxy in this case would be to inter-
cept the exchanged H.245 control messages, in order to find out the dynamically ne-
gotiated ports used by these streams. The Session Initiation Protocol (SIP) [13] Proxy
also operates in the same way. The SIP messages exchanged through the SIP Proxy
who, process them and extracts information about the addresses and ports of the audio
connection. The Proxy may also extract information relevant to resource reservation
(see the discussion on SIP extensions [14]) and use it for the formulation of a resource
request to the Resource Control Layer of Aquila.

A Web Proxy is also used for identification of Web traffic that may need QoS sup-
port. Such traffic would be links to multimedia content. The Proxy steps into the
transmitted content and identifies possible audio or video streams that could need QoS
treatment. Through the API, it communicates the acquired streams to the responsible
entity to take care of reservations. In the Aquila context, the Proxy Manager, after
being triggered by the Web proxy about specific multimedia streams, contacts the
EAT Manager through the API. According to user-specified settings, the EAT Man-
ager can either directly place a reservation with the aid of the Converter modules, or
contact the end-user through the GUI to ask for confirmation.

An important component of the Proxy Framework is an RSVP proxy, responsible
for identifying and interpreting RSVP protocol messages. In the Aquila architecture,
this is very significant, because the core network does not support IntServ for scal-
ability reasons. Therefore, while the PATH and RESV messages of RSVP are trans-
parently forwarded in the Aquila core network, they are caught at the edges by the
RSVP Proxy. Their content (Flowspec and Filterspec) is extracted and forwarded to
the EAT for the initiation of a new reservation. In this way, legacy RSVP applications
can be transparently accommodated by our architecture. It is obvious that any archi-
tecture could make use of the RSVP proxy for similar reasons, in order to decouple
RSVP from core network QoS technologies.

Based on the Proxy Framework, new Proxies may easily be implemented in order
to cover for the needs of other legacy applications. However, the functionality of the
Framework is not restricted to identifying flows pertaining to a specific protocol. A
central component, the Packet Filter is used to detect new flows that have not already
been registered by the Proxies.

Supporting QoS for Legacy Applications 7

Packet Filter

The Packet Filter is situated at the borders between access and core networks, usually
inside a firewall. It captures all incoming and outgoing packets from the access net-
work, checking their source and destination address. When a new flow is detected
(and no Proxy has been used), the Packet Filter examines its packets, in order to ex-
tract important information: IP addresses and port numbers, as well as hints on their
content, mainly through RTP headers in the case of multimedia flows. The Packet
Filter can therefore provide support for flows that are not established with the use of a
supported signaling protocol. Upon the detection of such a flow the EAT is contacted
in order to decide whether this flow will receive QoS support or not.

However, the main functionality of the Packet Filter is to conduct periodic traffic
measurements. The value of such measurements is two-fold. First, the traffic profile of
QoS flow may be estimated. Upon the establishment of a new connection, measure-
ments can provide some preliminary values for the formation of a resource reservation
request. As time passes by and the flow of the IP packets reaches a more stable rate,
more accurate measurements can be available and corrections to the QoS request may
be made. This feature of the Packet Filter enables the adaptation of a QoS reservation
according to the long-term fluctuations of user traffic.

The second advantage that measurements offer is that users may receive immediate
feedback on their traffic usage and on whether the requested levels of QoS reservation
are honored by the network. In the Aquila architecture, the flow identifiers and the
measurements are passed through the Proxy Manager and the API to the EAT Man-
ager. The EAT then displays the performance of the network in a comprehensible
format to the end-user through the GUI.
The basic measurements conducted by the Packet Filter mainly include the estimation
of the Tspec of a flow, as it is defined within the RSVP protocol [5]. The Tspec con-
sists of the following parameters: Peak rate, average rate, burst size, minimum policed
unit and maximum packet size. Those parameters are estimated by processing a list of
packet sizes along with their corresponding timestamp. The peak rate is calculated by
dividing the sum of bits sent over a small period of time by this period. The same way
is used for the average rate, by using a substantially longer period of time. The burst
size is estimated as the excess bytes sent over a small period of time, by subtracting
the bytes that should have been sent according to the estimated average rate, from the
actual bytes sent over this period. Finally, the minimum policed unit and maximum
packet size is the minimum and maximum packet size that has been observed for the
specific flow.
A future extension of the measurements functionality will include the estimation of the
delay, jitter and packet loss values of a packet flow. Those parameters cannot certainly
be measured by a standalone Packet Filter, but require the co-operation of two meas-
urement entities. A sender and a receiver should exchange test packets with charac-
teristics (packet marking, source and destination networks) similar to the flows under
measurement. Therefore we can measure the delay and its variation. However, this
solution poses new open questions, the most important being how the two Proxies will
locate each other and communicate.

Supporting QoS for Legacy Applications 8

The Proxy API

The Proxy Manager offers an API to the EAT using CORBA. In the Aquila architec-
ture, the EAT Manager uses this API to receive flow information and measurements.
Moreover, the API provides upcalls, that enable it to signal to the EAT a significant
change in the Tspec that may require the adaptation of the reservation. This approach
was chosen in order not to burden the system’s operation with a flood of signaling
messages between the EAT Manager and the Proxy.

This API may also be used by other external entities, such as applications. Through
the API, an application can query the Packet Filter about flow identifiers and meas-
urements. Moreover, it can query, tune, or configure existing proxies, or even add new
proxies to the framework to cater for individual needs.

Performance Issues

The most obvious location for the Proxy Framework is inside a firewall. In this way, it
can leverage the functionality of packet filtering in the edge routers. The operation of
a packet filter at the ingress of the core network is not expected to create a bottleneck.
We believe that the deterioration of performance of the network will not be greater
that the one introduced by a simple firewall. However, if the performance deteriora-
tion during the operation of the Proxy is significant, more than one Proxy can be in-
troduced in the network, by serving separate sections of an administrative domain.

On the other hand, one of the advantages of the Proxy Framework concept is the
provision of QoS to flows in the case of firewalls and Network Address Translation
(NAT). Since the Proxy Framework is exactly in the place where address translation
operations take place, it can identify the parameters of a flow (addresses and port
numbers) from both sides of a firewall.

4 Conclusions

In this paper we have presented a Proxy Framework for the support of legacy applica-
tions within a QoS architecture. The Proxy Framework is an important feature of
Aquila, an architecture that enables dynamic end-to-end QoS support over a DiffServ
enabled core network.

The basic functionality of the Proxy includes the use of Application-Level Proxies
that perform protocol translation of major connection set up protocols, in an effort to
support QoS for legacy applications. Moreover, the Proxy Framework is enhanced
with packet filtering capabilities that enable the performance measurements as well as
estimation of the traffic profile of QoS flows.

Supporting QoS for Legacy Applications 9

Acknowledgement

This work was performed in the framework of IST Project AQUILA (Adaptive Re-
source Control of QoS Using an IP-based Layered Architecture - IST-1999-10077)
funded in part by the EU. The authors wish to express their gratitude to the other
members of the AQUILA Consortium for valuable discussions.

References

1. R. Braden et al., “Integrated Services in the Internet Architecture: an Overview”, RFC 1633
2. S. Blake et al., “An Architecture for Differentiated Services”, RFC 2475
3. K. Nichols et al., “A Two-bit Differentiated Services Architecture for the Internet”, RFC

2638
4. R. Braden et al., “Resource ReSerVation Protocol (RSVP)”, RFC 2205
5. B. Riddle & A. Adamson, “A Quality of Service API Proposal”,
http://apps.internet2.edu/qosapi.htm
6. The Aquila project: http://www-st.inf.tu-dresden.de/aquila/
7. G. Poliths, P. Sampatakos, I.S. Venieris, “Design of a multi-layer bandwidth broker archi-
tecture”, Lecture Notes in Computer Science; Vol 1938, Springer Verlag, Oct 2000
8. E. Nikolouzou, P. Sampatakos, I.S. Venieris, “Evaluation of an Algorithm for Dynamic
Resource Distribution in a Differentiated Services Network”, Proceedings of ICN2001, June
2001
9. Ch. Tsetsekas, S. Maniatis, I.S. Venieris, “An end-to-end middleware solution for the sup-
port of QoS in the Internet”, Proceedings of SoftCOM2000, Oct 2000
10. CORBA/IIOP 2.3.1 Specification, http://www.omg.org/ corba/cichpter.html
11. E.R. Harold: XML Extensible Markup Language, IDG Books Worldwide, 1998
12. ITU-T Recommendation H.323, Packet-Based Multimedia Communication Systems, 1998
13. M. Handley et al., “SIP: Session Initiation Protocol”, RFC 2543
14. W. Marshall et al., “Integration of Resource Management and SIP”, draft-ietf-sip-
manyfolks-resource-00, November 2000

http://www-st.inf.tu-dresden.de/aquila/
http://www.omg.org/ corba/cichpter.html

