
Supplying legacy applications with QoS: a description

syntax at application, end-user and network level ∗

Anne Thomas
Software engineering group, Department of computer sciences,

Technische Universität Dresden
01062 Dresden, Germany

Anne.Thomas@inf.tu-dresden.de

ABSTRACT
In this article we consider end-to-end interdomain
Quality of Service support for non QoS-aware appli-
cations. We present a description of QoS requests
resp. offers at two levels: 1- at network level: the
so called network service profile, and 2- at application
resp. end-user level: the so called application pro-
file. These profiles support end-to-end and interdo-
main interworking for legacy applications wether they
are QoS-aware or not. The network is QoS enabled
and offers guaranteed network services.
With the proposed mechanisms (combination of con-
verters and description syntax at network and appli-
cation level) it is possible on the one hand to offer
user-friendly QoS, and on the other hand to provide a
negotiation and description syntax for QoS.
Thereby we address the topic of reverse-engineering
Internet applications in order to extract the behavior
and parameterizations information necessary for the
creation of the application profiles.

KEY WORDS
QoS, legacy application, end-user, application profile,
reverse engineering

1 Introduction

The variety of applications and services using the In-
ternet is constantly increasing. The network which
was originally planned to carry mainly data traffic is
nowadays being used for various traffic profiles, rang-
ing from real time audio and video to web traffic. How-
ever, the best effort nature of the current Internet is
not sufficient to cope with the requirements of these
different kinds of traffic, in terms of throughput, delay,
jitter and packet loss (network parameters affecting
the proper execution of most Internet applications).
Motivated by the rapid changes of the Quality of Ser-
vice QoS requirements of these new network applica-

∗This work was performed in the framework of IST Project
AQUILA (Adaptive Re-source Control of QoS Using an IP-
based Layered Architecture - IST-1999-10077) funded in part by
the EU. The author wish to express her gratitude to the other
members of the AQUILA Consortium for valuable discussions.

tions the Internet research has been evolving towards
providing a range of architectures like the Integrated
Services (IntServ) architecture [1], the first one in-
troducing QoS in the Internet, or the more scalable
and manageable Differentiated Services (DiffServ) ar-
chitecture [2].
At present time no public QoS-enabled network ex-
ists, and QoS aware applications are rare since few
QoS APIs (like the RSVP API RAPI and Winsock2
from Microsoft) are available for application develop-
ers. This fact implies that most of applications sus-
ceptible of being used in a future public QoS enabled
network will be non-QoS-aware legacy applications. In
this article we address the topic of QoS provisioning
for those legacy applications and focus on the QoS
request-offer scenario between the end-user and a QoS
enabled network. To enable this we propose a method
based on a description syntax specifying QoS at end-
user, network and application level. We discuss the
question wether a generic or implementation depen-
dent specification is appropriate. Thereby we address
the problem of reverse engineering of Internet applica-
tions in order to extract behavior information. At the
end of the paper we present ongoing related works.

2 Scenario

In the following, we consider a QoS enabled network
where the different domains offer guaranteed network
services. In the presented case study the network relies
on the AQUILA [4] architecture which has been real-
ized in a prototypical implementation. The end-user
uses legacy applications (like RealPlayer from RealSys-
tems, NetMeeting from Microsoft, a SIP agent etc.) as
usual. Theses applications can neither request nor of-
fer QoS. The concern of this article is to present a
method to supply such applications with QoS without
touching their code. One solution consists in offering
QoS at end-user level in parallel Fig. 1 to application
execution via a so called ”QoS portal”.
The QoS portal (Fig. 1 and Fig. 2) enables the identi-
fication of the application, the presentation of the QoS
related to the application in use and the selection of

Figure 1. Application selection in the portal. The QoS
portal as well as the application are running

Figure 2. Quality selection for the application.

a quality level. The aim of the portal is to provide
information about the application for the underlying
network and vice-versa. The end-user has the possibil-
ity to request specific QoS (see Fig. 2) in a simple way
using metaphors for QoS. Beside using the QoS portal,
a QoS request can be triggered from a complex Inter-
net service (value added web platform binding basic
Internet applications together) or directly via a QoS
aware application. The QoS request, after a mapping
into a network request, is transmitted to an admission
control agent accepting or rejecting it. This activity is
enabled using the so called application profile Fig. 3.
The application profile is a syntax that allows the de-
scription of applications in order to present the QoS
offer to the end-user via metaphors and to request for
QoS at a network independently from a network im-
plementation. The counterpart at network level is a
part of the application profile description syntax: the
network service profile. It enables the description of
the network services offered by a domain and serves
the inter-domain negotiation. The application profile
(and indirectly the network service profile) description

Figure 3. Utilization of application profile - scenario.

syntax is based on the hierarchical application struc-
ture depicted in Fig. 4. There are multiple views and
it is possible to describe an application in many ways.
The description of the application and QoS at the dif-
ferent levels corresponds to the description of the dif-
ferent following artefacts. At network level: descrip-
tion of the QoS expectations and requirements of the
application, description of the produced traffic, and
description of the implementation dependent QoS re-
quest. At application level (control plane level): de-
scription of the protocol used, port used. At applica-
tion level (data plane level): description of the imple-
mentation issues of the different service components,
and description of the different configuration options
(e.g. audio, video). At end-user level: building the
metaphors, presenting the possible QoS levels (Ses-
sionCharacteristic in Fig. 4). This description syntax
is described in detail in the following chapter.

3 Description syntax

In this chapter we present a description of QoS re-
quests (resp. offers) at network level: the so called
network service profile, and at application resp. end-
user level: the so called application profile by using
the eXtensible Markup Language (XML) [7] enhanced
by the Data Type Definition (DTD) [6] language.
The description syntax is based on the application
structure depicted in Fig. 4. A DTD-file rules the de-
scription of the different following artifacts at network,
application (control plane and data plane levels), and
end-user levels.
Toward the network the application profile syntax
(based on the network service profile) offers the possi-
bility to either implement QoS aware applications or
complement non QoS aware (but QoS sensitive) legacy
applications in order to make them QoS aware. In this
special case an intermediate entity serving as a media-
tor (the so called converter) between the network and
the application is required.

Figure 4. UML diagram analyzing an application. Application: legacy QoS non aware Internet application produces
traffic at the data plane level; is composed of Service Components that have general QoS requirements; they offer
many quality options; Each option has a behavior.

3.1 At Network level

The description syntax at network level enables on the
one hand the description of the application QoS re-
quest toward the network and on the other hand the
QoS offer of the network toward the application or the
network.

3.1.1 Generic description

At network level, with the description language net-
work service profile it is possible to specify and ab-
stract the underlying technical network services of a
network independently from the concrete implemen-
tation (e.g. DiffServ, etc.). This general description
is in a first step the basis for the QoS agreement be-
tween two domains at border router level. At the ac-
cess point of the network, this specification is part of
the QoS requirement/request of the application resp.
end-user and the Internet Service Provider QoS offer.
A weighting system and a subjective (with wordings)
rating enable a better definition of the requirements.
The DTD syntax of the traffic specification Fig. 4 is
as follows:

<!ELEMENT TrafficSpecification (type+,
duration, adaptivity, burstiness,
packetSize, bitRate, flow)>
<!ELEMENT type EMPTY>
<!ATTLIST type
type (realTime | nonRealTime | stream
| elastic) "stream">...

The parameters ”type” , ”duration” , ”adaptivity”,
”burstiness”, ”packetSize”, ”bitRate”, and the ”flow”
describe the traffic the application produces.
The DTD syntax (extract) of the QoS requirements

Fig. 4 of a service component is as follow: where
the parameters ”maxDelay”, ”maxJitter”, ”maxLoss”,
the ”bwGuarantee”, and ”ordering” correspond to the
QoS requirements of the application.

<!ELEMENT QoSRequirement (maxDelay,
maxJitter, maxLoss, bw, ordering)>
<!ELEMENT maxDelay (#PCDATA)>
<!ATTLIST maxDelay
unit CDATA #FIXED "ms"
requirement (Low |... High) "medium"
weight (0 | 1 | 2...| 9 | 10) "5">..

Below a detail of a concrete application profile of Net-
Meeting for the video service component:

<QoSRequirement>
<maxDelay requirement="high" weight="1"

unit="ms">1200</maxDelay>
<maxJitter weight="3" unit="ms"

requirement="low">120</maxJitter>
<maxLoss weight="5" unit="percent"

requirement="medium">10</maxLoss>
<bw weight="8" unit="percent"

requirement="high">-1</bw>
<ordering weight="8 requirement="true"/>
</QoSRequirement>

3.1.2 Implementation dependent de-
scription

The following DTD syntax relies on the specification of
the in described [3] QoS request. It is implementation
dependent.

<!ELEMENT AQUILASpecification (serviceID,
BSP, BSS, minPU, maxPS, PR, SR)>

The ”serviceID” parameter corresponds to the name
of the AQUILA network service, ”BSP”, ”BSS”,
”minPU”, ”maxPS”, ”PR”, and ”SR” correspond to
the parameters of the QoS request format used in [4].
Detail for the video-conference tool NetMeeting corre-
sponding to a ”video very low quality” scenario:

<AQUILASpecification>
<serviceID value="PVBR" />
<BSP unit="bytes">2000</BSP>
<BSS unit="bytes">5120</BSS>
<minPU unit="bytes">60</minPU>
<maxPS unit="bytes">1500</maxPS>
<PR unit="bit/s">160000</PR>
<SR unit="bit/s">75000</SR>
</AQUILASpecification>

3.1.3 Discussion

At interdomain level the generic network service pro-
file enables the negotiation between two domains and
the selection of the next domain providing most ap-
propriate network service. For example a ”Domain a”
selects the most appropriate domain fulfilling the com-
mitments to the consumer e.g. ”Domain f”. The basis
for selection is the general description of the request
and the general description of the offers This implies
that each domain possesses a mapping entity enabling
the translation of the offer resp. the request specified
with the network service profile into the proprietary
technical representation of the offer resp. request. If
we consider a network constituted of n different QoS
domains, having a generic description implies having
2n mapping possibilities. Not having a generic descrip-
tion implies n2 mapping possibilities.
A mapping with a generic description makes in this
manner only sense when the amount of domains offer-
ing different QoS is greater than two. As a matter of
fact, it still has to be proven that the generic descrip-
tion syntax works with other QoS implementations
than [4]. Moreover the IETF [5] activities of the work-
ing groups show that network operators etc. are deal-
ing with much more concrete and basic problems and
are not so advanced to discuss cross-implementation
issues.
As a conclusion it can be pointed out that on a small
scale it does not make a big difference having a generic
description or not, since the amount of possible map-
pings is relatively restricted. But when generic de-
scriptions are not used and new QoS technologies
emerge, the number of mappings will grow quadrat-
ically.

3.2 At Application level

At application level our idea consists in concretely de-
scribing applications both in the user space and the

network space as well as at control and data-plane lev-
els.

3.2.1 Data plane level

The information described at data-plane level corre-
sponds to the identification of the different flows pro-
duced by the application and the corresponding trans-
port protocol. The following DTD syntax enables the
listing of the different service components with their
corresponding transtport protocol.

<!ELEMENT Implementation
(ServiceComponent,TransportProtocol)>
<!ELEMENT ServiceComponent (name, option*)>
<!ATTLIST ServiceComponent

file CDATA #REQUIRED >
<!ELEMENT option (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT TransportProtocol EMPTY>
<!ATTLIST TransportProtocol

name (TCP | UDP) "TCP" >

Example for the NetMeeting tool:

<Implementation>
<ServiceComponent file="Video.xml">
<name>Video</name>
</ServiceComponent>
<TransportProtocol name="TCP"/>
</Implementation>
<Implementation>
<ServiceComponent file="Speech.xml">
<name>Speech</name>...

3.2.2 Control plane level

The information described at control-plane level corre-
sponds to the characterization of the control protocols,
the port numbers, etc. as showed in the following DTD
extract.

<!ELEMENT protocol
(lowerPortNo?,upperPortNo?,isControlPort?)>
<!ATTLIST protocol
name (RTP | ... | H324) "H323">
<!ELEMENT lowerPortNo (#PCDATA)>
<!ATTLIST lowerPortNo
value (fixed | configurable) "fixed">
<!ELEMENT upperPortNo (#PCDATA)>

Example for the NetMeeting video-conferencing tool.

<protocol name="H323">
<isControlPort value="true">1720
</isControlPort>
</protocol>
<protocol name="RTP">
<isControlPort value="false"></is...

3.3 At End-user level

Toward the end-user the description is based on the
assumption that an end-user cannot express QoS in
terms of high complex technical parameters like e.g.
RSVP, UMTS, etc. ones. The end-user can ex-
press QoS via metaphors corresponding to the human
senses: sight, hearing, and on the perception of time-
related behaviour. User-friendly descriptions for QoS
correspond to a universal apprehension of applications
and ideally make reference to well-known similar ser-
vices from everyday life like: TV, video recorder, hi-fi,
or phone etc. The application profile provides a syn-
tax enabling the user friendly description of the QoS
sensitive artifacts of applications the so called session
characteristic. With this syntax it is possible to de-
scribe the application artifacts for the end-user.
The application profile defines a syntax that enables
applications to present the QoS offer to the end-user
via metaphors and to request for QoS independently
from a network implementation.

<!ELEMENT SessionCharacteristic
(name, semanticalGroup*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT semanticalGroup
(description, qualifier*)>
<!ATTLIST semanticalGroup

type
(Technical|UserFriendly) "UserFriendly"
language
(en |...| gr) "en">
<!ELEMENT qualifier (#PCDATA)>

The name of the service component is e.g. picture size,
a semantical group for the service component could be
a user friendly description, in english qualified with
qualifiers: adjective, terms describing the service com-
ponent e.g. medium, big ... A detail for the NetMeet-
ing video service component:

<SessionCharacteristic>
<name>Picture size</name>
<semanticalGroup type="UserFriendly"
language="en">
<description>picture size</description>
<qualifier>very small</qualifier>
</semanticalGroup>
<semanticalGroup type="UserFriendly"
language="fr>
<description>taille de limage</description>
<qualifier>tres petite</qualifier>...

</SessionCharacteristic>

3.4 Realization

The presented approach has been implemented within
the AQUILA project [4] and successfully deployed. In

order to create the application profiles for concrete ap-
plications like NetMeeeting from Microsoft, RealSys-
tems from RealNetworks, etc. it is necessary to ap-
ply reverse engineering in order to discover behavior
artifacts. Each application is analyzed. In order to
extract the values the reverse engineer studies care-
fully the documentation (if existing) and with a test
bed measures under varying configurations (e.g. type
of the network access: modem, LAN etc.) the dif-
ferent values of the parameters. After the values are
experimentally collected it is possible to create the cor-
responding profile.
Considering the overall scenario it is obvious that the
QoS request resp. offer has to be translated at the dif-
ferent levels: between the end-user representation and
the network representation, and between the generic
representation and the concrete network implementa-
tion. These mappings are the tasks of converters sit-
uated at the different levels. In the special case of [4]
the mapping results are integral part of the concrete
application profiles. Due to the fact that [4] provides a
single QoS implementation the mapping is one to one.

4 Related work

In the following we give a brief review of other
QoS description or specification languages. These
languages enable the specification of QoS for new
applications but do not focus on the support of
legacy applications and apart from [9] do not address
end-user QoS. The CQML language [8] appears to
be the most developed language, nevertheless it does
not support a standardized description language like
XML and its implementation tools (parser, etc.).
The ODP-based QuO [10] (Quality of Service for
CORBA Objects) framework provides quality of
service (QoS) at the CORBA layer and extends the
CORBA functional Interface Description Language
(IDL) with the QoS Description Language (QDL).
QDL is an aspect oriented programming language for
describing the QoS aspects such as QoS contracts, the
adaptive behaviour of objects and delegates, and the
configuration of QuO applications.
The MAQS [11] (Management for Adaptive QoS-
enabled Services) project includes QIDL, an aspect
oriented programming language extension of the IDL
that supports the specification of QoS interfaces.
The Quality Assurance Language (QuAL) [14] in
QoSME [13] enables the specification of how to
allocate, monitor, analyse, and adapt to delivered
QoS. Applications can express in QuAL their QoS
needs and how to handle potential violations.
The QML (QoS Modeling Language) [12] is a general-
purpose language for defining QoS properties. QML
has three main abstraction mechanisms for QoS
specification: contract type, contract and profile.
The Component Quality Modelling Language

(CQML) [8] is a language for specifying QoS. The
QoS a component provides can be specified indepen-
dently of how the support is to be implemented and
without affecting the specification of its functional
properties.
HQML [9] is an XML-based Hierarchical QoS Markup
Language, to enhance distributed multimedia applica-
tions on the World Wide Web (WWW) with Quality
of Service (QoS) capability. HQML allows distributed
multimedia applications to specify all kinds of
application-specific QoS policies and requirements.

5 Conclusion

With the concept of network services profiles we
demonstrated that at network level an implementation
independent interdomain interworking scenario is con-
ceivable even recommendable, if more than two differ-
ent QoS domains interconnect. The working scheme is
as follows: at interdomain level the ”Domain a” maps
its request to a generic request that can be compared
to the different generic offers provided by the other
”Domains i”. This mapping is as well possible at ap-
plication level between an application and the QoS of-
fers.
With the concept of application profiles we showed
that at application level it is possible to supply at least
legacy non QoS aware applications with QoS. The so-
lution is based on the assumption that we have a QoS
enable network offering network services and non QoS
aware Internet applications running on a host. The
working scheme is as follows: applications run stand
alone at the host in parallel to a so called QoS web
portal and protocol gateways. The task of the web
portal is to enable the identification of the running
application (via manual selection by the end-user), to
present the QoS offer in appropriateness with the run-
ning application (using the application profiles), and
to request for QoS on behalf of the application toward
the network. The task of the protocol gateways is to
identify control plane information of the running ap-
plication in order to know which flows are to be sup-
ported with QoS. The task of the application profiles is
to describe information about application’s QoS pro-
file (what requirement does an application have), and
so constitute a repository of concrete application pro-
files.
As a conclusion we want to point out the high efficiency
of this solution. With the proposed mechanisms (com-
bination of converters and (generic) description syn-
tax at network and application level) it is possible in
an interdomain interworking scenario on the one hand
to offer user-friendly QoS, and on the other hand to
provide a uniform negotiation and generic description
syntax of QoS to support legacy applications.

6 References

[1] R. Braden, D. Clark and S. Shenker, Integrated
Services in the Internet Architecture: an Overview,
RFC 1633.
[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang
and W. Weiss, An Architecture for Differentiated
Services, RFC 2475.
[3] Winter et al., Final system specification, AQUILA
deliverable D1203, 2002. See [5].
[4] AQUILA Adaptive Resource Control for QoS
Using an IP-based Layered Architecture, http://www-
st.inf.tu-dresden.de/aquila/, 2000-2002.
[5] IETF Internet Engineering Task Force,
http://www.ietf.org.
[6] DTD Document Type Definition
http://www.w3.org/XML/1998/06/xmlspec-report-
v20.htm
[7] XML Extensible Markup Language
http://www.w3.org/XML/
[8] Aagedal, Quality of Service Support in De-
velopment of Distributed Systems, PhD. thesis,
Department of Informatics, University of Oslo, March
2001. http://www.ifi.uio.no/ janoa/papers/thesis.pdf
[9] Gu, Nahrstedt, Yuan, Wichadakul and Xu, An
XML-based Quality of Service Enabling Language for
the Web, Department of Computer Science University
of Illinois at Urbana-Champaign, Urbana, UIUCDCS-
R-2001-2212, April 2001.
[10] QuO homepage http://quo.bbn.com/
[11] Becker, Geihs, Generic QoS-Support for CORBA,
in Proceedings of 5th IEEE Symposium on Computers
and Communications (ISCC’2000) Antibes/France
2000.
[12] Frølund, Koistinen, QML: A Language for Quality
of Service Specification, Software Technology Labora-
tory, Hewlett-Packard Company, Report: HPL-98-10,
1998. http://www.hpl.hp.com/techreports/98/HPL-
98-159.pdf
[13]Soares Florissi, QoSME: QoS Management En-
vironment, PhD thesis, Columbia University, 1996.
www.cs.columbia.edu/dcc/publications/thesis/pgsf/
[14] QuAL homepage
http://www.cs.columbia.edu/ pgsf/qual.html.
[15] Salsano et al., Specification of traffic handling for
the second trial, AQUILA deliverable D1302, 2001.

