
Towards a Semantic Framework for Non-functional Specifications of
Component-Based Systems

Steffen Zschaler
Dresden University of Technology

e-mail: Steffen.Zschaler@inf.tu-dresden.de

Abstract

It is now widely recognized that the so-called non-
functional or extra-functional properties of a software
system are at least as important as its somewhat more clas-
sical functional properties and that they must be consid-
ered as early as possible in the development cycle in or-
der to avoid costly failures. In this paper we define elements
of a semantic framework for non-functional specifications
of component-based systems. We focus on how the run-
time environment uses components, whose non-functional
properties have been specified, and the available system re-
sources to provide a service with specified non-functional
properties.

1. Introduction

It is now widely recognized that the so-called non-
functional or extra-functional properties of a software
system are at least as important as its somewhat more clas-
sical functional properties and that, therefore, they
must be considered as early as possible in the develop-
ment cycle in order to avoid costly failures [7]. Oper-
ating systems research—especially research in the area
of real-time systems—performance analysis and predic-
tion research, and research in security have produced a
wealth of results describing how to analyse, predict, or
guarantee selected non-functional properties of applica-
tions (cf. e.g., [15, 26, 28, 29]). However, all these ap-
proaches work at a rather low level—for example, they
use concepts like tasks, periods, memory pages, queu-
ing networks, etc. These concepts on their own are not
sufficient to model today’s increasingly complex soft-
ware systems.

Component-based software engineering [27] offers a
way to partition complex systems into well-defined parts.
The relevant properties of these parts are precisely spec-
ified, so that these parts in principle can be developed

independently and assembled at a later time, and possi-
bly even by a different person than the original developer.
Functional issues of component-based software engineer-
ing have been well investigated (e.g., [6, 27]), but very lit-
tle research has been performed concerning non-functional
properties. In particular, the higher-level component-based
concepts must be mapped to the lower-level concepts al-
ready available in the literature.

In our work, we investigate this mapping by providing a
semantic framework which explains how the different parts
of a component-based system work together to deliver a
certain service with certain non-functional properties. The
contribution of this paper is to define the basic concepts of
this framework. In doing so, we do not strive to reinvent
the theories already available, but rather to enable them to
be plugged into the framework when and where they are
needed. This way we hope to achieve two objectives: To
allow application developers to use component-based soft-
ware engineering to structure their applications and thus
lower the complexity of the software development process
while at the same time enabling them to make use of tried
and tested theories for providing non-functional properties
of those applications. Our approach aims to enable the var-
ious roles participating in application development to write
specifications independently of each other, while allowing
for these specifications to be composed to a global system
view for analysis. Thus, we enable the specification and de-
velopment of applications to be distributed over time and
development teams, which is of increasing importance as
software systems get more and more complex.

A precise and formal semantic foundation for these con-
cepts serves multiple purposes: First, it aids in clarifying the
concepts themselves, and their relations. Second, it allows
application developers to create precise and unambiguous
models of the systems they develop. Last but not least, a se-
mantic foundation forms a basis for providing tool-support
to application developers. Such tool support can come in
two main forms:Analysis toolshelp application developers
to analyse their models and to spot problems early in the de-
velopment cycle.Refinement toolshelp application develop-



ers while developing the models by providing decision sup-
port in refinement steps. The notion of afeasible systemde-
scribed in this paper is an example for a property that should
be checked by an analysis tool. We have described an exam-
ple for tool-supported refinement in [20].

There are two sides to providing non-functional proper-
ties of component-based systems:

1. Component developers mustimplementcomponents in
such a way that they have determinable non-functional
properties.

2. Application assemblers and the runtime system must
usethese components so that the non-functional prop-
erties required from the application can be guaranteed.

For example, we will never be able to make any guarantees
about the memory consumption (or time for data retrieval)
for a FIFO queue component which was implemented us-
ing a linked list without any limits on its maximum size,
but, even if the queue was implemented with a fixed-size ar-
ray of length 64 kB, we can still use it in such a way that it
consumes 256 kB of memory—by creating four instances.
In our research, we are not interested in how components
must be implemented so that their non-functional proper-
ties become determinable; these questions are only contin-
gently related to components, but the real issues are com-
pletely independent of component-based software. Instead,
our approach assumes such components with determinable
non-functional properties to be available. Based on this, we
provide a semantic framework, which allows

• component developers to describe the non-functional
properties of these components, and

• application assemblers to describe how these compo-
nents are used to provide guaranteed non-functional
properties of an application.

Note that, although we are talking about non-functional
properties of component implementations, we will—as
above—very often simply talk of components where it is
clear what we mean.

The remainder of this paper is structured as follows: We
first present an overview of our system model in Sect. 2, be-
fore explaining the details of non-functional specifications
in Sect. 3. After some notes on related work, we summa-
rize the paper and provide an outlook on future work.

2. System Model

In this section we introduce the system model underly-
ing the semantic concepts for non-functional specifications.
We want to support component-based software and in par-
ticular the component-specific scheduling and usage deci-
sions made by the runtime environment of the components

IdleIdle HandlingRequestHandlingRequest

reqRcvd

IdleIdle HandlingRequestHandlingRequestIdleIdle HandlingRequestHandlingRequest

reqRcvd

Figure 1. Basic model of a service.

(the container). Hencecomponentsand thecontainerare in-
tegral parts of our system model. Because we are talking
about non-functional properties, availablesystem resources
must be present in our model, too. Finally, non-functional
requirements on systems are never expressed in terms of
components or containers, but rather in terms of the ser-
vices provided by the system. Therefore, we also introduce
the concept of aservicein our model. We will describe these
four basic concepts in more detail in the following sections.

2.1. Services

Users view a system in terms of the services it pro-
vides. They do not care about how these services are imple-
mented, whether from monolithic or component-structured
software. A service is a causally closed part of the com-
plete functionality provided by a system. As various authors
[14, 23] have pointed out, we can model services as par-
tial specifications of a system. Multiple services can then be
combined into a total specification of the system’s function-
ality. Users associate non-functional properties with indi-
vidual services, for example, they will talk about the frame
rate provided by a video player service independently of the
response time of a cast query for that same film. So, from
the user’s perspective, the non-functional properties of in-
dividual services should be described independently. Note
that this does not imply that the non-functional properties of
two services cannot interact, for example, because their re-
spective implementations run on the same system and share
the same resources. However, although users may be able
to specify preferences on services, indicating which service
should prevail in case of resource contention, they need to
be able to describe their non-functional requirements inde-
pendently for each service.

We use an execution model of a service which distin-
guishes those execution phases that differ in their resource
usage. Therefore, transition systems are an adequate ap-
proach for formalizing this model. Using them in all our
models has the added benefit that it allows for easy com-
position using theorems as those described in [2]. A state
machine for our service model can be seen in Fig. 1. At
the moment we use a very simple model that essentially
identifies a service with a single operation that a client
can invoke. Each service can be in one of two states:



Idle or HandlingRequest . It moves fromIdle to
HandlingRequest when it receives a triggering event
(denoted byreqRcvd —short for “request received”—in
the figure); this corresponds to the operation call. While
the service is in stateHandlingRequest the correspond-
ing computations are performed; the service moves back to
Idle as soon as the result is delivered back to the caller.

2.2. Components

Components provide implementations for services. As
has been pointed out in the literature [14, 23] a component
can provide implementations for multiple services. In ad-
dition, services can be implemented by networks of multi-
ple cooperating components. In this case, the service’s func-
tionality is composed from the functionality of the individ-
ual components.

2.3. Resources

The termresourceis used in the literature essentially to
refer to everything in the system which is required by an ap-
plication (in our case the “application” includes both com-
ponents and the container) in order to provide its services
(e.g., [9, 28]). More specifically, Goscinski defines a re-
source as:

“. . . each reusable, relatively stable hardware or
software component of a computer system that
is useful to system users or their processes, and
because of this [. . . ] is requested, used and re-
leased by processes during their activity.” ([9,
Page 440f.])

The most important properties of a resource are that
it can be allocated to, and used by, applications, and that
each resource has a maximum capacity. We do not consider
resources with unlimited availability, because they do not
have any effect on the non-functional properties of an ap-
plication. We distinguish between the actual resource (e.g.,
CPU, memory) and the aspect it enables (e.g., execution
of program code/computation, availability of space to store
data). It will become clear further down why we believe this
distinction is important.

2.4. Container

The components implementing a service require a run-
time environment to be executed. We call this runtime en-
vironment thecontainer. The container instantiates compo-
nents, connects these instances to other instances accord-
ing to the functional service specification, and provides
various middleware services to the components, including
access to the underlying platform. In short, the container

manages and uses the components such that it can provide
the services clients require. Extending this notion to non-
functional properties, we see that the container needs to use
components and resources in such a way that it can guaran-
tee the required non-functional properties of the services it
provides.

Additionally, the system’s environment also plays an im-
portant role. In particular, the container may need to make
assumptions about the environment in order to provide its
services. In this case, the container will only be able to pro-
vide a certain level of non-functional properties as long as
its assumptions about the environment are still valid. En-
vironment assumptions may include information on the in-
terarrival times of requests (for time-based properties), as-
sumptions about the abilities of system attackers (for secu-
rity properties), usage profiles, etc.

3. Non-functional Specification

In this section we explain how we specify non-functional
properties of component-based systems. There are two parts
to a non-functional specification: measurements and con-
straints. We will explain how measurements can be used
to define non-functional dimensions along which systems
can be specified. Finally, we introduce the term of a feasi-
ble system which describes a system which has sufficient
resources to provide a certain service with certain non-
functional properties.

3.1. Measurements

We use the concept of ameasurementto represent non-
functional dimensions of systems. Non-functional specifi-
cations can then be expressed as constraints over measure-
ments. Our concept of a measurement is based on the mea-
surement theory one (e.g., [8]) where a measurement is a
mapping from physical or empirical objects to formal ob-
jects. The “physical or empirical objects” in our case are
states of the system, thus measurements can be represented
as state functions. We have explained in other publications
[20, 21] how we usecontext modelsto specify measure-
ments independently of the concrete applications on which
they are to be used.

We distinguish two kinds of measurements:

1. Extrinsic measurementsdescribe a non-functional di-
mension which is applicable to a service and is rele-
vant from a user perspective. They view the system as
a whole and do not make distinctions to allow for other
services, other components, or resource contention. In
effect, extrinsic measurements can be used to describe
users’ non-functional requirements on a service.

An example for an extrinsic measurement is re-
sponse time of a service, a state machine with a def-



IdleIdle HandlingRequestHandlingRequest

reqRcvd;
texecStart = now

tlastResponseTime = now - texecStart

texecStart = 0

tlastResponseTime = 0

IdleIdle HandlingRequestHandlingRequestIdleIdle HandlingRequestHandlingRequest

reqRcvd;
texecStart = now

tlastResponseTime = now - texecStart

texecStart = 0

tlastResponseTime = 0

Figure 2. State machine with definitions for
the response time measurement.

IdleIdle HandlingRequestHandlingRequest

reqRcvd;
tsegStart = now
taccExec = 0

tlastExecutionTime = taccExec + now - tsegStart

InEnvironmentInEnvironment

taccExec = 0

tlastExecutionTime = 0

tsegStart = 0

suspend;
taccExec += now - tsegStart

resume;
tsegStart = nowIdleIdle HandlingRequestHandlingRequestIdleIdle HandlingRequestHandlingRequest

reqRcvd;
tsegStart = now
taccExec = 0

tlastExecutionTime = taccExec + now - tsegStart

InEnvironmentInEnvironment

taccExec = 0

tlastExecutionTime = 0

tsegStart = 0

taccExec = 0

tlastExecutionTime = 0

tsegStart = 0

suspend;
taccExec += now - tsegStart

resume;
tsegStart = now

Figure 3. State machine with definitions for
the execution time measurement.

inition can be seen in Fig. 2. The state machine has
been annotated with assignments which are executed
when the corresponding transition is triggered. In any
statetlastResponseT ime holds the response time of the
last service invocation. The definitions use the special
variablenow, introduced by Abadi and Lamport in [3],
which represents the current time and advances inde-
pendently of the state machine shown.texecStart is a
helper variable holding the start time of the last ser-
vice invocation.

2. Intrinsic measurementsdescribe non-functional di-
mensions of component implementations. The value
of an intrinsic measurement for a specific implemen-
tation depends principally on the way the implemen-
tation is realised. If two implementations differ in
their values for an intrinsic measurement, they use dif-
ferent algorithms or implementation techniques to
provide their functions. Definitions of intrinsic mea-
surements account for the presence of other com-
ponents, and for resource contention, i.e., for the
environment in which the component will be exe-
cuted. In effect, intrinsic measurements can be used to
describe the properties of an actually existing imple-
mentation independently of how this implementation
is used.

An example for an intrinsic measurement is execu-

tion time of an operation, a state machine with a def-
inition can be seen in Fig. 3. This state machine is
very similar to the one in Fig. 2,tlastExecutionTime

holding the execution time of the last invoca-
tion of the operation. Note, however, the addi-
tional state InEnvironment which is used to
model the fact that the component’s execution may
be interrupted by the environment in favour of an-
other component (suspend ) and later resumed again
(resume ). The assignments at the transitions are de-
signed such as to ensure that execution time only
counts the time actually spent executing the compo-
nent and does not count the time spent executing other
components. This is achieved using the helper vari-
ablestsegStart, the start time of the last execution seg-
ment, andtaccExec the accumulated execution time so
far.

The distinction between these two kinds of measure-
ments can perhaps be most clearly described by the fol-
lowing example: For a component which provides an op-
eration to add two integer values, we can determine the ex-
ecution time of this operation by adding the time taken to
load the two parameter values into the processor, to per-
form anadd machine operation, and to store the result into
the memory slot for the return parameter. However, there
is no way to determine the response time this component
will exhibit solely from the component’s code. The reason
for this is that the response time depends on how the compo-
nent isusedinstead of how it isimplemented. The execution
time only determines a lower bound for the response time,
but the container can use the component to provide any re-
sponse time above this lower bound. For example, the con-
tainer may buffer incoming requests and distribute them to
multiple instances of the component in order to be able to
service a large number of incoming requests. In this case
the allocated size of the buffer generates an additional de-
lay which must be added to the execution time to determine
the response time. Other examples in support of this distinc-
tion include integrity of component code, and load balanc-
ing.

3.2. Non-functional Properties

Non-functional properties are constraints over measure-
ments. Examples are properties like “The response time of
servicelogin is always less than 50 ms”, or “The execu-
tion time of operationlogin is always less than 30 ms.”
(Note the difference between service and operation and
how—accordingly—an extrinsic respectively an intrinsic
measurement is used. The difference between these two
specifications will be further explored below.) As usual,
any non-functional property can be interpreted as a non-



functional specification, stating that the property holds for
the element being specified.

We distinguish four kinds of non-functional specifica-
tions:

intrinsic specification specification of component imple-
mentation properties

extrinsic specification specification of properties of a ser-
vice

resource specificationspecification of resource properties

container specification specification of container be-
haviour with respect to non-functional properties

We will now look at each of these specifications in turn.

3.2.1. Intrinsic SpecificationsComponent implementa-
tion properties are described using constraints over intrin-
sic properties. These constraints describe relations between
the various intrinsic measurements relevant for the compo-
nent implementation. The most simple example is a state-
ment like: “The execution time of operationlogin is less
than 30 ms”. More complex properties constrain the relation
between multiple measurements. For example, for a com-
ponent computing a numerical value (e.g., the adder com-
ponent from Sect. 3.1) the execution time might depend on
the number of exact decimals the component computes. In-
trinsic specifications describe the effect of the algorithms
and implementation techniques used to create a component
implementation.

Note, that component implementation specifications
make no explicit mention of the resources required to pro-
vide the component’s services. It is not useful to express
resource demand of a component as an intrinsic prop-
erty, because it depends largely on how the component is
used. For example, CPU demand depends on both the in-
trinsic property execution time, and the number of requests
per second the component has to serve. For this rea-
son, component implementation specifications constrain
intrinsic properties only, but some of these intrinsic proper-
ties (e.g., execution time) correspond to an aspect enabled
by a certain resource (e.g., CPU). The relation between re-
source specifications and component implementation
specifications is established by the container specifica-
tion described later in Sect. 3.2.4.

3.2.2. Extrinsic SpecificationsService specifications es-
sentially constrain extrinsic measurements for a single ser-
vice. These constraints express how users expect the sys-
tem to behave. In addition to such a simple classification
into acceptable and unacceptable behaviours we also inves-
tigate using value functions (e.g., [16, 22]) to express users’
preferences on acceptable behaviours as well as their pref-
erences for certain services. However, in the context of this
paper we constrain ourselves to simple constraints on ex-
trinsic measurements. The property “The response time of

servicelogin is always less than 50 ms” from above is an
example for an extrinsic specification.

3.2.3. Resource SpecificationsAs we explained in
Sect. 2.3, resources enable some non-functional as-
pect, provided their capacity is sufficient to serve the
specified load. This leads directly to a resource speci-
fication schema which has two parts: a) an antecedent
describing the capacity limits, and b) a consequence de-
scribing the non-functional aspect enabled by the resource.
While the antecedent depends strongly on the specific re-
source and may use arbitrary parameters and formulæ, the
consequence is in effect a constraint over intrinsic mea-
surements, although some mapping needs to be provided
in the container specification (Sect. 3.2.4). For exam-
ple, for a CPU with a rate-monotonic scheduler [15] the
capacity limit can be expressed by the following for-
mula:

n∑
i=1

ti
pi
≤ n ·

(
n
√

2− 1
)

wheren is the number of tasks, andti andpi refer to the
worst case execution time and period of theith task, resp.
The non-functional aspect enabled by this resource is that
thesen tasks described by these parameters can be sched-
uled to execute jobs with a periodpi which are allowed to
execute for at leastti units of time between the begin and
end of their respective period. This is in essence a constraint
over execution time.

As shown in the example above, resource specifications
are the “hook” at which the well understood theories from
operating systems research can be plugged into the seman-
tic framework.

3.2.4. Container SpecificationThe container uses re-
sources and components to provide a service with certain
non-functional properties. In order to reason about the ex-
trinsic properties of a system based on the intrinsic prop-
erties of its components and the available resources we
need to specify precisely how the container uses the com-
ponents and resources. A container specification is written
in rely–guarantee style [13] with the antecedent assert-
ing that:

1. the available component implementations have the
provided intrinsic properties. This pre-condition es-
sentially enumerates the intrinsic properties the con-
tainer takes into account.

2. the system’s environment guarantees certain proper-
ties. Depending on the algorithms implemented by the
container, the system environment will need to give
different guarantees. A typical example of the kind of
guarantees given by the system environment is the dis-
tribution of request interarrival times. This can be used



together with queuing theory based techniques to de-
termine the optimal number of components and buffer
size to achieve a required response time with compo-
nents with a known execution time [4].

3. the available resources will enable the required non-
functional aspects. What non-functional aspects are re-
quired depends on the intrinsic properties of the avail-
able components, the extrinsic property to be provided,
the guarantees given by the system environment, and
the algorithms implemented by the container. This an-
tecedent is the central part of the container specifi-
cation which describes the mapping from extrinsic
and intrinsic non-functional properties of services and
components to the lower-level concepts of resource
specifications.

Provided these conditions hold, the container guarantees
that it will deliver a certain service with specified extrin-
sic properties. The container specification thus forms a sec-
ond “hook” at which results from performance analysis, se-
curity analysis, etc. can be plugged into the framework.

The concrete implementation of such a specification is
out of the scope of this paper. However, we have previously
elaborated on an example of mapping component execution
times to service response times in [4] where it was called
Container-Based Scheduling. In this example, the container
computes the number of instances to pre-instantiate, as well
as the size of a buffer to use for storing incoming requests,
so that a certain service can be provided with the speci-
fied extrinsic properties. It uses the intrinsic properties of
the component implementation and information on the dis-
tribution of the interarrival times of incoming requests to
compute the results.

3.3. Feasible Systems

In the last sections we have described four types of spec-
ifications. It is important to realise that for any software
project these specifications are written by different people,
and at different times in the development cycle. Resource
specifications are written by the people who have built the
hardware or provided the operating system code managing
and scheduling the resources. Container specifications are
provided by the people who have built the container. In-
trinsic specifications are written by component developers,
while extrinsic specifications are laid down by application
designers.

All these specifications are only useful if we can com-
pose them to obtain a global view of the system which we
can use for analysis. One useful analysis is to test whether
the available resources are sufficient to provide the required
extrinsic properties given the available components and the
container specification. This is equivalent to proving that the

composition of resource specifications, container specifica-
tion, intrinsic specifications, and system environment guar-
antees implies the extrinsic specification. This can be stated
as

(R ∧ C ∧ I ∧ E) ⇒ S

where

R: conjunction of the resource specifications of all re-
sources available in the system

C: container specification

I: conjunction of the intrinsic property specifications of all
available component implementations

E: environment guarantees, if any are needed by the con-
tainer specification

S: required extrinsic property specification

We define afeasible systemto be a system made up from
components, resources, and a container which together ful-
fil the above condition under given environment assump-
tions. We can use Abadi/Lamport’s rule of inference [2] to
prove feasibility, provided all the antecedents of all specifi-
cations are safety properties. A complete example of such a
proof cannot be given here due to space restrictions.

4. Related Work

In his thesis [1] Aagedal defines CQML, a specifica-
tion language for non-functional properties of component-
based systems. The definition remains largely at the syntac-
tic level, semantic concepts are mainly explained in plain
English without formal foundations. Staehli [25] describes
a formal technique for specifying non-functional properties
of multimedia presentations. As an extension and combina-
tion of these efforts, the two authors recently and indepen-
dently of our research published a short paper on “QoS Se-
mantics for Component-Based Systems” [24]. Their work
is restricted to timeliness and data quality properties and
does not cover resource demand at all. In contrast, we use
more abstract definitions which cover any kind of measure-
ment, including but not limited to timeliness and data qual-
ity. Also, resource demand and resource allocation is a cen-
tral element of our semantic domain.

Hissam et al. [11] describe a prediction-enabled compo-
nent technology (PECT). This work is very similar to our
work in that it attempts to provide a framework in which
specific analysis methods and specific component models
can be combined. However, their work is somewhat more
abstract. Also, they seem to be exclusively concerned with
modularisation into components, whereas our work explic-
itly takes into account the container and resources as an im-
portant yet separate part of an overall system. Bertolino, Mi-
randola and Vincenzo [5, 10] presented work attempting to
merge techniques from software performance engineering



with component-based software engineering. They distin-
guish two model layers: the software model which repre-
sents the logical component structure of a system, and the
machinery model which models properties relevant for per-
formance analysis. Their work is based on the UML pro-
file for schedulability, performance and time specification
[17]. Reussner et al. [19] describe work on analysing non-
functional properties of components and component-based
systems using parametrised contracts [18]. They provide ar-
guments which support our claim that properties of compo-
nents and the effects of using components must be treated
separately. Specifically, they use Markov-chains to model
and analyse reliability of component-based systems. Their
work only considers properties on the component level and
does not capture influences from the runtime environment
and the underlying resources.

There are various publications proposing the use of
value functions for the specification of non-functional prop-
erties [16, 22], using a task-based computational model.
Resources are considered in [16], however only where re-
source demand can be adjusted during execution. The
model is completely oriented towards adaptation, admis-
sion control is not considered in this model. In contrast,
we defined the notion of afeasible systemwhich cap-
tures admission control. The authors of [22] combine the
concepts of measurement and constraints over measure-
ments into the notion of a “metric”.

A large host of literature dealing with non-functional
properties (especially real-time properties) exists from the
areas of operating systems research and performance anal-
ysis and prediction (cf. e.g., [15, 26, 28, 29]). Our ap-
proach aims to integrate these approaches with ideas from
component-based software engineering to enable software
developers to consider non-functional properties of com-
plex applications as early as possible in the development
cycle.

5. Conclusions and Outlook

In this paper we have presented semantic concepts which
form the basis of a semantic framework for the specifica-
tion of non-functional properties of component-based soft-
ware. We have presented a system model in which compo-
nents with intrinsic properties (depending on the algorithms
and techniques used in their implementation) are used by
a container to provide a specified service with specified
extrinsic non-functional properties using the available re-
sources of the system. Measurements are used to express
non-functional dimensions, and non-functional properties
(or specifications) are expressed as constraints over such
measurements. We distinguish two types of measurements:
intrinsic and extrinsic measurements. We have shown what
is expressed in specifications of the individual parts of the

system, and how these parts work together to form a system.
Finally, we have introduced the termfeasible systemde-
scribing a system in which sufficient resources, and the nec-
essary component-based scheduling algorithms in the con-
tainer are available to provide a service with the required
non-functional properties. We are currently working on for-
mally describing the concepts presented in this paper as well
as developing concrete component-based scheduling algo-
rithms, such as the one described in [4]. We have shown
that the individual specifications can be developed indepen-
dently and indeed by different people and at different mo-
ments in time. This enables us to distribute the specification
and development work in a development team, which al-
lows us to handle much more complex problems than with-
out this modularisation. Because the specifications can be
composed to provide a global view of the system, we can
still ensure the system will meet its requirements.

Furthermore, we plan to extend our approach in various
ways:

• We want to include stream-based applications into
our concept of aservice. Stream-based communica-
tion is an important concept, especially in multime-
dia applications, which frequently have real-time and
other non-functional requirements. So far, however,
our model only supports request–response scenarios,
where a service essentially represents a single opera-
tion.

• Because different services may share the same re-
sources, there can be dependencies between their non-
functional properties. These dependencies can lead to
conflicts, so that not all of the services can be per-
formed with their specified extrinsic properties. In or-
der to resolve such conflicts, we need another specifi-
cation indicating users’ preferences on services. Sim-
ilarly, some extrinsic properties of the same service
may interact. For this case, we also need a specifica-
tion of users’ preferences to resolve conflicts. We are
going to use value functions, and to provide more elab-
orate container specifications to support this.

• We have not shown in this paper, how intrinsic proper-
ties of different components can be composed to derive
intrinsic properties of a component network. This can
essentially be done by simply composing their spec-
ifications, but we need to perform further research to
support this claim.

• Non-functional properties often depend on the actual
data being processed. We plan to extend our approach
to cover this aspect for special cases where the result-
ing non-functional property can be combined from a
specification of the component and a specification of
the data.



Acknowledgements

This research is carried out in the context of the
COMQUAD project, a project funded by the German
Research Council (DFG, project no. FOR 428). See
www.comquad.org for more details. I am grateful to Prof.
Heinrich Hussmann, Sten Löcher, Simone R̈ottger, and ev-
erybody in the COMQUAD project for many fruitful dis-
cussions. I also want to thank Ralf Reussner and the
anonymous reviewers for providing very helpful com-
ments towards the final version of the paper.

References

[1] J. Ø. Aagedal.Quality of Service Support in Development of
Distributed Systems. PhD thesis, University of Oslo, 2001.

[2] M. Abadi and L. Lamport. Composing specifications. In
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Stepwise Refinement of Distributed Systems - Models,
Formalisms, Correctness, volume 430 ofLNCS, pages 1–41,
Berlin, Germany, 1989. Springer-Verlag.

[3] M. Abadi and L. Lamport. An old-fashioned recipe for real
time. ACM ToPLaS, 16(5):1543–1571, Sept. 1994.

[4] R. Aigner, M. Pohlack, S. R̈ottger, and S. Zschaler. Towards
pervasive treatment of non-functional properties at design
and run-time. InProc. Int’l Conf. on Software & Systems En-
gineering and their Applications (ICSSEA), Paris, Dec. 2003.

[5] A. Bertolino and R. Mirandola. Towards component based
software performance engineering. InProc. 6th Workshop on
Component-Based Software Engineering: Automated Rea-
soning and Prediction at ICSE 2003, pages 1–6. ACM/IEEE,
May 2003.

[6] J. Cheesman and J. Daniels.UML Components: A Simple
Process for Specifying Component-Based Software. Addi-
son Wesley Longman, Inc., 2001.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.Non-
Functional Requirements in Software Engineering. The
Kluwer international series in software engineering. Kluwer
Academic Publishers Group, Dordrecht, Netherlands, 1999.

[8] G. Ford. Measurement theory for software engineers. InLec-
ture Notes on Engineering Measurement for Software Engi-
neers. Carnegie Mellon University, 1993. CMU/SEI report
CMU/SEI-93-EM-9.

[9] A. Gościński. Distributed Operating Systems: The logical
design. Addison-Wesley Publishers Ltd., 1991.

[10] V. Grassi and R. Mirandola. Towards automatic compo-
sitional performance analysis of component-based systems.
In Proc. 4th Int’l Workshop on Software and Performance
WOSP 2004, pages 59–63, California, USA, Jan. 2004.

[11] S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wall-
nau. Packaging predictable assembly. In J. Bishop, editor,
Proc. IFIP/ACM Working Conf. on Component Deployment
(CD 2002), volume 2370 ofLNCS, pages 108–126, Berlin,
Germany, June 2002. Springer-Verlag.

[12] IASTED. Proc. IASTED Int’l Conf. on Software Engineer-
ing (IASTED SE’04), Innsbruck, Austria, Feb. 2004. ACTA
Press.

[13] C. B. Jones. Specification and design of (parallel) programs.
In R. E. A. Manson, editor,Proceedings of IFIP ’83, pages
321–332. IFIP, North-Holland, 1983.

[14] I. H. Krüger. Service specification with MSCs and roles. In
Proc. IASTED Int’l Conf. on Software Engineering (IASTED
SE’04)[12].

[15] J. W. S. Liu.Real-Time Systems. Prentice Hall, NJ, 2000.
[16] J. W. S. Liu, K. Nahrstedt, D. Hull, S. Chen, and B. Li. EPIQ

QoS characterization. ARPA Report, Quorum Meeting, July
1997.

[17] Object Management Group. UML profile for schedulabil-
ity, performance, and time specification. OMG Document,
Mar. 2002. URL http:// www.omg.org/ cgi-bin/ doc?ptc/02-
03-02.

[18] R. H. Reussner.Parametrisierte Vertr̈age zur Protokolladap-
tion bei Software-Komponenten. Logos Verlag, Berlin, 2001.

[19] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt.
Contracts and quality attributes for software components.
In W. Weck, J. Bosch, and C. Szyperski, editors,Proc.
8th Int’l Workshop on Component-Oriented Programming
(WCOP’03), June 2003.

[20] S. R̈ottger and S. Zschaler. Model-driven development for
non-functional properties: Refinement through model trans-
formation. InProc.<<UML>> Conf., 2004. To appear.

[21] S. R̈ottger and S. Zschaler. A software development process
supporting non-functional properties. InProc. IASTED Int’l
Conf. on Software Engineering (IASTED SE’04)[12].

[22] B. Sabata, S. Chatterjee, M. Davis, J. J. Sydir, and T. F.
Lawrence. Taxonomy for QoS specifications. InProc.
3rd Int’l Workshop on Object-oriented Real-Time Depend-
able Systems (WORDS’97), Newport Beach, California, Feb.
1997.

[23] C. Salzmann and B. Schätz. Service-based software specifi-
cation. InProc. Int’l Workshop on Test and Analysis of Com-
ponent Based Systems (TACOS) ETAPS 2003, Electronic
Notes in Theoretical Computer Science, Warsaw, Poland,
Apr. 2003. Elsevier.

[24] R. Staehli, F. Eliassen, J. Ø. Aagedal, and G. Blair. Quality
of service semantics for component-based systems. InMid-
dleware 2003 Companion, 2nd Int’l Workshop on Reflective
and Adaptive Middleware Systems, 2003.

[25] R. Staehli, J. Walpole, and D. Maier. Quality of service spec-
ification for multimedia presentations.Multimedia Systems,
3(5/6), Nov. 1995.

[26] J. A. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo.
Implications of classical scheduling results for real-time sys-
tems.IEEE Computer, 28(6):16–25, June 1995.

[27] C. Szyperski. Component Software : Beyond Object-
Oriented Programming. Addison-Wesley Publishing Com-
pany, Nov. 1997.

[28] A. S. Tanenbaum.Modern Operating Systems. Prentice Hall,
2nd edition, 2002.

[29] A. M. Tilborg, editor.Foundations of Real-Time Computing.
Kluwer Academics, 1991.


	Introduction
	System Model
	Services
	Components
	Resources
	Container

	Non-functional Specification
	Measurements
	Non-functional Properties
	Intrinsic Specifications
	Extrinsic Specifications
	Resource Specifications
	Container Specification

	Feasible Systems

	Related Work
	Conclusions and Outlook

