
Explicit Modelling of QoS-Dependencies

Steffen Zschaler1 and Marcus Meyerhöfer2

1 Dresden University of Technology
Steffen.Zschaler@inf.tu-dresden.de

2 Friedrich–Alexander–University Erlangen–Nürnberg
Marcus.Meyerhoefer@informatik.uni-erlangen.de

Abstract. When specifying Quality of Service (QoS) for components
the usual method employed is to specify regions of QoS offers and re-
quirements. The component offers a certain QoS under the condition
that it will be provided some specified QoS by the environment. The de-
pendency between offered and used QoS is essentially given through dis-
crete examples, rather than an equation or inequity. In the COMQUAD
project3 we have come to the conclusion that in some cases it is both
more natural and more efficient to specify these dependencies more ex-
plicitly, and precisely.
In this position paper we discuss the advantages and disadvantages of
both approaches and give some first ideas as to how QoS–dependencies
can be specified explicitly.

1 Introduction

The idea to develop software from already existing and well-understood
parts is not a new one. After it had become clear that object-oriented
software development was just another step towards a new way of soft-
ware development – amongst other things because of the tight connection
between the objects and the application they were developed for – it is
commonly understood that component-based technologies facilitate soft-
ware reuse and ease application development. This is achieved through
the concept of software components – units of software that have no im-
plicit dependencies among each other and therefore can be subject to
independent reuse.
While there are a lot of different definitions what a component is, there is
none that is commonly agreed upon. We follow the definition of Szyper-
ski in [7] stating: ”A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to
composition by third parties.“
As in engineering sciences – like for example electrical engineering, where
hardware is build out of predeveloped IC-cores or whole microchips –

3 COMponents with QUantitative properties and ADaptivity is a project funded by
the German Research Council. It was started October 1, 2001, at Dresden University
of Technology and Friedrich–Alexander–University Erlangen–Nürnberg.



rigorous specification is the key factor for the success of such an approach,
because developers need to be able to understand the function, usage and
semantics of a component without knowing its source code.

From this perspective building software out of components deals with
specifying contracts between it’s parts. Commonly there are four dif-
ferent levels of contracts distinguished [2]. In the COMQUAD project,
a project aimed at the development of a system architecture and de-
velopment methodology for component-based software with quantitative
properties and adaptivity, we focus on the fourth level of contracts, i.e.
the specification of Quality of Service (QoS) and security-related proper-
ties of software. This will enable us to estimate properties of applications
built from components and react to changing environmental conditions
through adaptation. However, adaptation is outside the scope of this
paper and not further considered herein (see for example [6]).

This position paper explores how to specify dependencies between the
QoS offered and used by a component, showing that current approaches
are not expressive enough to capture all dependencies. Examples are
given in the specification language CQML [1]. Section 2 introduces the
area of concern on the basis of a simple application and draws attention to
the problems discovered. In Section 3 we present some possible solutions
and open questions. In Section 4 we summarize the issues covered and
outline the path we want to follow up in the future.

2 Problem Description

In QoS specification languages for components (e.g., CQML) the space
of QoS characteristics is usually divided up into regions, that is intervals
for measured quantities. These regions are defined in an assumption-
guarantee ([3]) style through constraints on QoS characteristics, speci-
fying what a component expects from the environment (including other
components) and what it will offer to the environment. At any one mo-
ment in time, the component being executed ”lives“ in exactly one of
these regions.

If the QoS state of the environment changes, moving the component out
of its current region, the runtime system attempts to find a different re-
gion which fits the new situation. If it finds such a region, it performs a
transition between the two regions, i.e. it informs the component that it
now works in a different region and thus allows it to make any adjust-
ments necessary.

For example, consider a web server which besides normal web-pages
serves dynamic content, such as video streams. Depending on client hard-
ware and system capabilities the video information can be sent in differ-
ent levels of compression. The compression takes place on-the-fly in the
web server. It is handled by an encoder component.

An encoder component performs a difference encoding by comparing
two adjacent images in a stream of images and extracting the difference
between those two images.

This component could be specified in CORBA IDL as follows:



interface ImageSource {

Image getNextImage();

}

component ImageStreamEncoder {

provides ImageSource encodedImages;

uses ImageSource unencodedImages;

}

It is immediately clear that the time that passes between issuing a request
for the next encoded image and receiving the result is at least as much as
the time it takes to fetch the source image. Lets assume, we even know
that the actual encoding takes another 5 milliseconds. To express this in
CQML we first have to specify the characteristic response time of an
operation:

quality_characteristic response_time (op: Operation) {

domain: numeric real [0..) milliseconds;

values: (op.SE->last().time() -

op.SR->last().time()).abs();

}

Where op.SE and op.SR are queues of events registering request and
response, resp. The values clause itself describes the semantics of the
given quality characteristic in terms of the underlying computational
model. Now we have to define regions of QoS for the component. For
example:

quality low_response_time (op: Operation) {

response_time (op) < 5;

}

quality med_response_time (op: Operation) {

response_time (op) >= 5 and

response_time (op) < 10;

}

quality high_response_time (op: Operation) {

response_time (op) >= 10 and

response_time (op) < 20;

}

profile response_times for ImageStreamEncoder {

profile fast {

uses low_response_time (unencodedImages.getNextImage);



provides med_response_time (encodedImages.getNextImage);

}

profile slow {

uses med_response_time (unencodedImages.getNextImage);

provides high_response_time (encodedImages.getNextImage);

}

}

Immediately, two questions arise:

1. What happens if fetching a source image takes 10 milliseconds or
longer?

2. Is there any specific reason, why we chose 5 and 10 milliseconds as
the regions’ boundaries?

These two issues are actually two facets of one basic problem: The struc-
ture of the language forced us to represent an explicit dependency (i.e.,
computing the encoded image takes 5 milliseconds plus the time needed
to fetch the unencoded image) in implicit form, by way of giving a finite
number of examples. The only reason why we chose the numbers 5 and
10 as boundaries of the regions is that we had to choose some boundary
value and 5 and 10 were just as good as any. Because we can only give
a finite number of regions (i.e., examples), there will always be a region
that we cannot specify.
The example shows that, although the specification of QoS dependencies
using regions is useful, there are cases where it would be desirable to be
able to specify the dependency more explicitly. Which type of specifica-
tion is more useful depends on the context of the specification:

1. As can be seen from the example above, there are some cases where
the explicit description is the more natural form. This is for example
always the case when we already know an explicit dependency which
we only want to formalize.

2. Specifying dependencies explicitly can provide the runtime system
with more information. This may make adaptation to changing re-
source situations easier, because the runtime system can predict the
effect of changes on a component’s offered QoS.
Adaptation is of course also possible if the system has ”only“ been
specified using regions, but in this case the runtime system is re-
stricted to adapt between the predefined regions. If no region has
been defined for the current situation, the system fails. Note that
providing ”closure“ regions just to make sure every possible situa-
tion has been covered in some way is not always feasible due to com-
binatorial explosion. If the different regions are classified by uses

clauses constraining only one QoS characteristic, things are simple
enough and one ”closure“ region will be sufficient. If the uses clauses
constrain more than one different characteristics, there needs to be
one ”closure“ region for each combination of characteristics.
For example, if we have the characteristics a and b and the state-
ments



a1 The characteristic a is in an undefined region.
a2 The characteristic a is in a well-defined region.
b1 The characteristic b is in an undefined region.
b2 The characteristic b is in a well-defined region.
then we need to provide ”closure“ regions for the following com-
binations: a1 and b1, a1 and b2, and a2 and b1. The number of
combinations obviously explodes with the number of different char-
acteristics.

3. Assumption-guarantee-style specifications [3] are more naturally ex-
pressed with uses and provides clauses using regions of offered and
expected quantities.
The semantics of QoS specifications with explicit dependencies is
quite different when it comes to negotiating QoS contracts. Normal
assumption-guarantee specifications can to a large extent be nego-
tiated locally between two components at a time. If only explicit
dependencies are present, contract negotiation needs to always ”rip-
ple through“ all the way to the fundamental resources, because only
there actual values of offered QoS exist, against which the required
QoS (computed from the primary required QoS and the QoS depen-
dencies specified) can be compared. Thus, the actual contract ne-
gotiation may be more efficient for assumption-guarantee-style QoS
specifications.

4. In some cases the system model may not be sufficiently detailed
to discern a clear dependency between offered and used QoS. Then,
specifying regions will remain our best choice. One such case is when
the offered QoS depends not only on the QoS provided by other
components, but also on the actual data being handled. This can
presently not be expressed easily in a CQML specification, so the
best we can do is to provide a range of offered QoS which encom-
passes all values possible for any piece of data potentially to be
processed.

Another reason for choosing one way of specifying over the other lies
in the development approach used. The two specification methods differ
in their appropriateness for top-down or bottom-up approaches, respec-
tively.
For a bottom-up approach, in which components are developed inde-
pendently and later assembled to form various applications, we would
specify QoS dependencies explicitly. The reason is that in this case we
know the components and can understand their behaviour by measuring
it in a testbed. Thus, we are able to learn as much as possible about the
component and we do not have to restrict ourselves to regions. Thinking
further along these lines, we find that explicit dependency specification
could be a good way of documenting QoS related issues for components
off the shelf (COTS).
On the other hand, with a top-down approach, where we design an ap-
plication and, in the process, break it up into components, using regions
for QoS specification may be more appropriate. Here we cannot measure
the component behaviour prior to the application design. Part of the re-
quirements is a document specifying what non-functional properties are
expected to hold with respect to the system. This is essentially, what



the system is supposed to provide. On the other hand, we may also
specify what the system uses by saying what hardware we are willing
to pay for. The specification only gives requirements, it does not give
any assertion that there exists an actual dependency between used and
provided QoS (or, in other words, that the demanded system can indeed
be implemented). The specification with regions may be turned into a
specification with explicit dependencies once we are working at the level
of individual components. Composing these individual specifications may
then give us an explicit specification of the QoS dependencies of the com-
plete system which allows to check whether the required QoS can indeed
be provided.
While the distinction by development process is important, the key factor
is given by the context of specification as indicated above.
It is easily conceivable, that both styles of specification need to be mixed
in a single specification document, to use the best of both worlds. It
can even be imagined to mix the styles in the specification of a single
component, such that a component’s profile is split into various regions,
some of which are specified as before, using uses and provides clauses,
while others specify explicit dependencies of offered and used QoS. A
region that is described using explicit dependencies would consist of two
parts:

1. A uses clause specifying the conditions under which the component
works in this region.

2. Equations and inequalities that provide the explicit dependencies.

3 Proposed Solutions

In section 2 we have argued that specification of QoS offers and require-
ments by regions is not always appropriate. In this section we give some
ideas on how QoS dependencies could be expressed explicitly.
The solution that comes to mind immediately is to describe dependen-
cies by writing down equations which map the QoS used into the QoS
provided by a component. Staying with our example, we could imagine
to rewrite the component’s profile using a new clause qos dependency:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + 5;

}

However, this only works, if we can easily give such a precise dependency,
that is, we know this exact factor and the ImageStreamEncoder compo-
nent always shows this exact, deterministic behaviour. Very often it will
be the case that we have only a rough idea of the kind of dependency,
but may not know the precise factors. In our example, the time needed



to encode the image may well depend on the actual unencoded image
– its complexity, color depth etc. – but also on the kind of encoding
performed. But maybe we can say something more specific about the in-
terval in which the provided QoS will be, if the usable QoS has a certain
value.
Interval analysis (sometimes also called interval computations, [4],[5])
provides a way to handle intervals instead of exact values as parameters
or results of functions. We could make use of these concepts to describe
QoS-dependencies where some part is known precisely, while for some
remainder we only know the possible range of values. For example, to
state that the time it takes the ImageStreamEncoder to encode an image
is the time it takes to get the next unencoded image plus a varying
”encoding time” of 5 to 10 milliseconds, we could write:

profile response_times for ImageStreamEncoder {

qos_dependency

response_time (encodedImages.getNextImage) =

response_time (unencodedImages.getNextImage) + [5,10];

}

As a generalization, both dependency specifications containing intervals
and those containing only discrete values can be interpreted in an in-
terval computational way by replacing all explicit values x by the in-
terval [x, x]. This means that the statement above is valid independent
wether response time (unencodedImages.getNextImage) evaluates to
a discrete value or to an interval itself. However, it is clear that hav-
ing a discrete value enables us to calculate a sharper interval as response
time for ImageStreamEncoder. Closely related to this is the question how
to deal with open intervals expressing knowledge like for example ”the
response time is always greater than 5 milliseconds”.
An even more powerful and expressive way compared to using intervals
is to not state the interval explicitly, but to use two functions to specify
an upper and a lower bound for the dependency, as follows:
Let f and f be two partial functions with dom f = dom f ⊆ X1 ×
. . .×Xn where each Xi is a QoS characteristic domain (e.g. the quality
characteristic response time) and

∀ (x1, . . . , xn) ∈ dom f : f (x1, . . . , xn) ≤ f (x1, . . . , xn)

Then we call F =
(
f, f

)
a dependency function with dom F = dom f .

The function evaluates to the closed interval between f (x1, . . . , xn) and

f (x1, . . . , xn):

F (x1, . . . , xn) =
[
f (x1, . . . , xn) , f (x1, . . . , xn)

]
We then can use such dependency functions, for example:

profile response_times for ImageStreamEncoder {



qos_dependency

response_time (encodedImages.getNextImage) =

[response_time (unencodedImages.getNextImage) + 5,

response_time (unencodedImages.getNextImage) + 10

* image_size(unencodedImages.getNextImage)];

}

An advantage of this approach is, that f and f do not need to run in

”parallel“.4 As can be seen in the example we now can express the fact,
that the encoder component has a minimum execution time of 5 mil-
liseconds (independent of the size of the actual image to be compressed),
but for the upper bound the size of the actual unencoded image has to
be considered, too (we assume an operator image size to exist and to
denote the size of the parameter image). We would not have been able to
state this dependency with just one function as in the second example.

So far, we have given examples for one provided quality characteristic
only. What happens if the provided QoS affects more than one character-
istic is another interesting issue. In addition to the relationship between
offered and used QoS of the component there may now also exist depen-
dencies between different characteristics of the offered QoS: For example,
for an operation computing the sine of a value there may be two options:
(a) highly accurate result at the price of longer execution time or (b) less
accuracy of the result balanced by a shorter execution time. How to ex-
press this kind of dependency most efficiently remains to be looked into.
An interesting question in this context is whether to give dependencies
for all characteristics of the provided QoS in one statement or to provide
individual statements dealing with one provided characteristic at a time.

4 Conclusion

We have argued that specifying QoS offers and requirements by means
of provides and uses clauses is not always appropriate. Sometimes it is
more natural to specify the dependency explicitly by giving an equation
or inequality which relates offered and used QoS directly.

Depending on how precisely the relation between offered and used QoS
is known there are several levels of how to express it. The most precise
is by giving an explicit equation, which assigns one value of the offered
QoS characteristic to each value of the used QoS characteristics. If this
precision cannot be achieved, the next weaker option is to use interval
computations to express the parts of the relation expression for which
only intervals are known. Another option would be to use two functions
one for the upper and one for the lower bound. The weakest way of
specifying QoS dependencies is by using uses and provides clauses. Al-
though the given examples had a rather simple structure, the benefit
of using explicit specification should be obvious. Explicit specifications

4 i.e., it is not required to hold that f (x1, . . . , xn)− f (x1, . . . , xn) ≡ const



will be of even more use if they incorporate parameters of the meth-
ods specified (e.g. the image size of the images to be encoded by our
ImageStreamEncoder component).
So far, we have motivated and proposed a syntax for explicitly specifying
QoS dependencies. It remains to precisely define the semantics of such
constructs and to research how using them influences QoS management
systems. Another field of research is to look into actual applications of
the concepts trying to validate the hypothesis that they help making
specifications clearer and easier to use.

References

1. Jan Øyvind Aagedal. Quality of Service Support in Development of
Distributed Systems. PhD thesis, University of Oslo, 2001.

2. Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making components contract aware. IEEE Computer,
32(7):38–45, July 1999.

3. C[liff] B. Jones. Specification and design of (parallel) programs. In
R. E. A. Manson, editor, Proceedings of IFIP ’83, pages 321–332.
IFIP, North-Holland, 1983.

4. Vladik Kreinovich, Daniel J. Berleant, and Misha Koshelev. Inter-
val computations website. URL: http://www.cs.utep.edu/interval-
comp/.

5. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs N.
J., 1966.

6. Christoph Pohl and Steffen Göbel. Integrating orthogonal middleware
functionality in components using interceptors. In Proc. Kommunika-
tion in Verteilten Systemen (KIVS’03, Leipzig), Leipzig, Germany,
February 2003. To appear in Informatik Aktuell, Springer.

7. Clemens Szyperski. Component Software : Beyond Object-Oriented
Programming. Addison-Wesley Publishing Company, November 1997.


