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Abstract. Model driven architecture (MDA) views application development as a
continuous transformation of models of the target system. We propose a method-
ology which extends this view to non-functional properties. Our basic idea is the
separation of two different roles in the development process: the role of the mea-
surement designer and the role of the application designer. The former provides
a library of measurement definitions which is later used by the latter to anno-
tate functional application models with non-functional property specifications.
In this paper we define the notion of context models to allow the measurement
designer to provide measurement definitions at different levels of abstraction in-
dependently of concrete applications.
Requiring the measurement designer to define transformations between context
models and applying them to measurement definitions, enables us to provide tool
support for refinement of non-functional constraints to the application designer.
The concepts presented in this paper form the basis of a tool which we are cur-
rently developing.

1 Introduction

Non-functional properties of a system—for example, Quality of Service (QoS) or se-
curity aspects—need to be considered as early as possible in the development cy-
cle to analyse the non-functional behaviour of the system. This is especially true for
component-based systems because all context dependencies need to be made explicit.
In the context of theCOMQUAD project1 we develop a methodology supporting the
modelling of component-based systems with particular emphasis on non-functional as-
pects. In this paper we present the models required by the methodology. Although they
are directly applicable to Quality of Service properties only (such as response time, de-
lay, memory usage), we believe that they can be extended to cover other non-functional
properties—such as security—as well. For the purpose of this paper we will consider
the terms non-functional and QoS to be synonyms.

The core concept of QoS specifications is the measurement—or characteristic [8]. A
measurement is a mapping from states, objects, or events of a physical system (e.g., an

1 COMponents with QUantitative properties and ADaptivity at Dresden University of Technol-
ogy and Friedrich-Alexander-University Erlangen-Nuremberg, Germany; supported by Ger-
man Research Council; see www.comquad.org
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implemented and running application) to a formal system (e.g., the set of real numbers).
Examples for measurements are: response time (a mapping from an operation call in a
running system to a real number representing the time taken from invocation to return),
or confidentiality (a mapping from a channel used to transfer information to a value
indicating the level of confidentiality achieved by this channel). By using models of the
relevant aspects of target applications—we call thesecontext models—in the definition
of measurements, these definitions can be made independent of specific applications.
They will then be applicable to any system model that can be viewed as an instance of
the context model used in the definition of the measurement. Non-functional specifi-
cations essentially constrain measurements applied to a functional model of a system.
They are therefore application specific. From this duality it follows naturally to define
two roles in the development process: Themeasurement designerand theapplication
designer. The former creates a library of measurements, which are later used by the lat-
ter to annotate application models with non-functional specifications. This allows reuse
of measurement specifications defined once.

The basic idea of existing development processes—especially MDA-based [12]
approaches—is the refinement of system models from an abstract view of the system to
a model close to the real implementation. The application designer creates, and thinks
about, functional models at different levels of abstraction. He should be able to do so
for non-functional models, too. We propose to use different context models to represent
different levels of abstractionfor a measurement. Requiring the measurement designer
to define transformations between the different context models and applying them to
measurement definitions forms the conceptual basis for providing tool support for the
application designer’s refinement of non-functional specifications. The application de-
signer can then perform these refinements as prompted by refinements in the functional
model of the system. We distinguish two kinds of non-functional refinement:structural
refinementandmeasurement refinement, which will be explained later in Sect. 3.

This paper is an extended and refined version of [18]. It focuses on modelling issues
related to measurement refinement. In Sect. 2 we give a short introduction to our over-
all development process, which forms the context of this work. The following sections
describe measurement refinement and the related models in more detail: from the appli-
cation designer’s view (Sect. 3), from the measurement designer’s view (Sect. 4), and
from a more technical, tool-oriented perspective (Sect. 5). We use a simple example ap-
plication with response time constraints throughout the paper to illustrate our approach.
Finally, the conclusion points out the most important arguments of our work as well as
issues for further research.

2 A Process for Component-Based Systems with Non-functional
Properties

Fig. 1 gives an overview of our overall software development process for non-function-
al properties. After the requirements analysis the application designer begins to model
the system. This includes modelling of non-functional properties by specifying non-
functional constraints and attaching them to components and connectors. The appli-
cation designer switches between modelling—and refining—non-functional properties
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Fig. 1.Development process for non-functional properties overview

of the components (called “Application Modelling” in the figure) and of the compo-
nents’ environment (called “Environment Modelling” in the figure), using the concept
of connectors for the latter part.

Our approach separates measurement definition from measurement usage; that is,
specification of non-functional properties of applications using these measurements.
Measurement definitions can be very complex, but on the other hand will be developed
only once. Therefore, we separate the roles of measurement designer and application
designer in our process. Their combined efforts lead to a specification of the system
including its non-functional properties.

Our process comprises the following steps:

1. Definition of measurements at different levels of abstraction and provision of trans-
formation rules for context models by the measurement designer (see Sect. 4). The
measurement designer can do so independently of application development and
even at a far earlier time.

2. Use of measurements during the specification process by the application designer.
The application designer constrains measurements and binds these constraints to
elements of the functional model.

3. Tool-supported refinement of measurements. The application designer chooses one
out of different kinds of provided refined measurements. These have been previ-
ously provided by the measurement designer together with an informal description
of each measurement.

4. Modelling and refinement of connectors between components during the assembly
process. The application designer uses connectors to model the influence of the
container on non-functional properties of the application.

The resulting non-functional specification is used for a variety of purposes. Besides
generating code for runtime monitoring of QoS parameters, its main use is in providing
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a base for QoS contract negotiation and resource reservation in the running system—the
component container.

We use two specification languages: For functional modelling we primarily use the
component model element from UML 2.0 [16] extended with a stereotype for interfaces
which allows us to distinguish between operational and streaming interfaces. For the
non-functional specification we use CQML+ [17] an extension to CQML [1]. Finally,
we use a more compact XML-based representation in the runtime environment.

CQML+ builds on quality characteristics, which essentially are definitions of mea-
surements. Quality statements are used to specify constraints on characteristics. Both
quality characteristics and quality statements are parametrised and can therefore be
reused in different contexts. To actually attach the non-functional specification to the
functional one, CQML+ provides the construct of quality profiles. In such a profile cur-
rent parameter values—for example, operations or streams of the component to which
the non-functional constraint is applied—replace the formal parameters of quality state-
ments. Quality statements can be associated to a component as offers (provides ),
requirements (uses ), or resource demands (resources ).

CQML+ is a textual language comprising both measurement definition and mea-
surement usage. For graphical modelling of measurement definitions we plan to use
ideas proposed in [7]. For measurement usage we have defined a graphical notation
allowing to attach constraints to parts of the functional model. The internal tool rep-
resentation uses CQML+, merging measurement definition and constraints into one
specification.

For a more in-depth explanation, we describe the individual models as seen from
the application designer’s view as well as from the measurement designer’s view in the
following sections.

3 The Application Designer’s View

The application designer obtains a target specification from the requirements analysis.
Using this artefact, he starts to model an adequate system which fulfils the customer’s
requirements. He creates a functional model of the system, tagging non-functional as-
pects to it using a system modelling tool supporting graphical modelling. As he pro-
gresses in the development, the functional model gets more and more detailed. Cor-
respondingly, the non-functional specification needs to be refined, too. We distinguish
two kinds of non-functional refinement:

1. Structural Refinement: The application designer adds new model elements, as the
functional model gets more refined. In this process, he may have to reassign non-
functional property specifications that had been tagged to some model element to
some newly added model element—or he may even have to distribute them to sev-
eral new elements. For example, at a very early stage the application designer of a
video server application may have modelled the complete application as one mono-
lithic component, also tagging any non-functional specifications—for example, re-
sponse time constraints—to this component. Later, he refines the component by
decomposing its functionality into several subcomponents. In this step, he will also
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Fig. 2.A sequence diagram excerpt showing different kinds of response time specification

need to refine the non-functional properties tagged to the monolithic component
by determining which of the subcomponents have to provide each non-functional
property.

2. Measurement Refinement: With this type of refinement the application designer
uses a more precise interpretation of the meaning of a certain characteristic. For
example, he may wish to start out thinking about response time simply as the time
between start and end of an operation call. Later he may wish to make more pre-
cise statements about response time. Fig. 2 shows his options: the time between
1) the reception of a request and the sending of the corresponding response, or
2) the reception of a request and the reception of the corresponding response, or
3) the sending of a request and the sending of the corresponding response, or 4) the
sending of a request and the reception of the corresponding response.

This paper focuses on measurement refinement. Structural refinement remains an
open issue. As a simple example imagine a login mechanism of aVideoServer com-
ponent using another componentUserManager that manages user data. At an early
stage of development the application designer decides that the video server component
provides an interfaceILogin and uses an interfaceIUserMgt . TheUserManager
provides this interfaceIUserMgt . For operations of these interfaces he can specify
different response times depending on the internal execution times of the components.
This corresponds to Step 2 in Sect. 2. We are working to extend an existing CASE tool
to provide support for our graphical notation for non-functional properties.

However, so far he has not thought about response time in detail, but only as the
time between start and end of an operation call. Here, our mapping support is applied.
If he wants to refine the response time of the operationIUserMgt::checkPassWd
used by theVideoServer , the application designer asks the CASE tool to refine this
non-functional aspect. The tool provides four different kinds of refined response times
using a library where the information about the mapping is stored. Depending on what
the application designer wants to model, he will choose one of the refined response
times and the tool will update the internal model representation and tag the treated
characteristic as refined. This is Step 3 from Sect. 2. Figure 3 shows what the screen
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could look like after these two steps. It shows the two componentsVideoServer and
UserManager , their used and provided interfaces, and the attached non-functional
constraints. Some of these have already been refined—this can be seen from the line
‘model = fine ’. The application designer has just opened the refinement dialogue
for the last non-functional constraint to be refined and selected one of the possible
refinements. Note that the application designer is completely shielded from the formal
intricacies underlying the different response time definitions.

Once non-functional specifications have been created and connected with a func-
tional specification, it becomes important to have analysis tools allowing for determi-
nation of various properties of the system. One property for which analysis is very
important and helpful is to determine whether a component satisfies the non-functional
demands of another component. For this it is necessary to compare theused properties
of the “client” component with theprovided properties of the “server” component.

In the example such an analysis becomes necessary between theVideoServer
and theUserManager . TheVideoServer requires the response time forcheck-
PassWd to be less than 470ms, while theUserManager provides a response time for
checkPassWd of less than 400ms. Analysis can conclude that the offered response
time constraint is stronger than the required constraint. Thus, the two components can
safely be plugged together.

After a refinement of the response time, the situation may well be different. For
example, the application designer may have chosen variation 4 (cf. Fig. 2) for refining
response time inVideoServer and variation 1 forUserManager . This corresponds
to the principle of locality in component-based software engineering: no component
specification makes constraining statements about anything beyond its own boundaries.

Trying to analyse whether or not these two components can work together yields no
result as the two variations cannot directly be compared. This is not a shortcoming of
the analysis, however, but a lack of the model. The application designer needs to add in-
formation about the delay of the communication channel between the two components.
In other words, the refinement of the non-functional constraint prompts a refinement
in the functional model: the designer needs to consider aspects of the communication
between the components.
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Communication between components is modelled using connectors in Architecture
Description Languages (ADLs) [14]. This concept can be extended to provide non-
functional properties of communication (cf., e.g., [5, 9, 20]). In our example, we might
model the container-induced delay for communication to be 50ms. Given this additional
information, the analysis tool should then be able to conclude, that the two components
can safely be used together. This concludes Step 4 as described in Sect. 2.

In order to allow the application developer to concentrate on the business logic of
his application, it seems reasonable to provide him with a library of connectors for
different aspects of the container and of distribution. He would simply select an appro-
priate connector—or build a chain of connectors to combine non-functional effects of
different connectors like distribution and encryption—from this library and plug it into
his model.

4 The Measurement Designer’s View

In the previous section we have had a look at the application designer’s view. Now, let’s
have a look behind the scenes. This is where the measurement designer has done his
work to make handling of non-functional properties easy for the application designer.
He has specified individual measurements using CQML+, defined context models for
each measurement specification and level of abstraction, and performed transforma-
tions to provide measurement specifications at different levels of abstraction. This cor-
responds to Step 1 in Sect. 2.

Each CQML+ specification—and in particular each definition of a quality charac-
teristic—is written relative to what in [1] is called a computational model. We pre-
fer the termcontext model, as it is really a model of the context of the characteristic
definition—that is, it comprises the elements necessary for specifying the semantics of
the characteristic. For each context model and each component model to be used, there
needs to exist a mapping relating the concepts of the component model to concepts in
the context model. For each concept of the component model (e.g., the concept of com-
ponent itself) we need to identify the concept in the context model which represents
it.

As we have shown in Sect. 3, at different stages in the development cycle it is
helpful to use characteristics defined at different levels of abstraction. In order for this
to be possible, we need to define context models at all these levels of abstraction. In
effect, each context model represents the specification of a specific level of abstraction.
This is different from what was proposed in [1], where one computational model was
used for every CQML specification, independent of level of abstraction. Instead, we use
multiple context models to represent different levels of abstraction.

Figures 4 and 5 show two examples of context models. Figure 4 shows a rather
coarse—or more abstract—context model. All that one can talk about are components,
interfaces, and operations on the static side and component instances and operation calls
between instances on the dynamic side.2 For each operation it is possible to access the
history of invocations of this operation. Each operation call connects two operations,

2 Although only structure is shown in the figure, each context model also has a behavioural
aspect captured in a transition system. These specifications have been left out for lack of space.
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Fig. 4.Abstract context model

q u a l i t y c h a r a c t e r i s t i c r e s p o n s et i m e ( op : O p e r a t i o n ) {
domain : numeric r e a l [0 . . ) m i l l i s e c o n d s ;

va lues : op . i n v o c a t i o n s−>l a s t ( ) . end− op . i n v o c a t i o n s−>l a s t ( ) . s t a r t ;
5 }

Listing 1.1. Abstract response time definition

one in the used interface of the calling component instance (caller ) and one in the
provided interface of the called component instance (callee ).

Simple as it is, this context model already allows us to define the response time of
an operation. Listing 1.1 shows the corresponding CQML+ definition. Thedomain
clause defines response times to be real values given in milliseconds. Thevalues
clause defines how response time values can be measured. It relates to the context
model, using the start and end time of an operation call, which are stored in the at-
tributesstart andend , respectively.

The context model in Fig. 5 is much more detailed. It represents a much lower level
of abstraction. In particular, it contains event sequencesSEandSRfor each operation.
For each operation in a used interface,SE(short for “service emission”) contains events
fired whenever a request for an operation call was issued by the calling component;SR
(short for “service reception”) contains one event per result that was received by the
calling component. On the other hand, for each operation in a provided interface,SR
contains one event per request received, andSE one event per result sent out from the
called component. This context model is already very close to Aagedal’s [1] computa-
tional model.

To perform the interactive refinement described in Sect. 3, we have to specify the
transformation between these two models. We need to say for each model element in
the coarser model which model element(s) it should be mapped to in the finer model.

The term ‘dynamic’ in the diagrams refers to classes instances of which are created in the
course of executing the transition system, while ‘static’ refers to those classes whose instances
remain fixed over a complete run.
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This can be specified using a transformation language (as defined for MDA, e.g., in
[12]) based on XML [3]. The transformation language and algorithm will be explained
in more detail in Sect. 5.

After designing the finer context model and the transformations, the measurement
designer who specified the response time characteristic in Listing 1.1 uses a transforma-
tion tool to apply the transformations to his specification of response time, and to gen-
erate refined versions of response time for the more detailed context model. Currently
we are working on the implementation of such a tool using the concepts presented in
this paper.

Listing 1.2 shows two of the four resulting versions of response time3. Note that
the numbers appended to the characteristics’ names correspond to the numbers from
Fig. 2. The relationship between the more abstract response time definition and the
newly created refined versions is stored as another transformation in the transformation
specification. It remains the task of the measurement designer to give a clear textual
explanation of the differences between the various types of response time, so that they
can be used easily by an application designer. Of course, the measurement designer
can also define additional measurements which could not be defined at the higher level
of abstraction. Furthermore, application designers may require additional refinement
patterns which they could communicate back to the measurement designer who would
then provide the appropriate context models and transformation specifications.

5 The Transformation Language

In the previous section we explained that the measurement designer specifies context
models and transformations between them, and uses these transformations to generate
characteristic specifications at lower levels of abstraction from specifications at higher
levels of abstraction. In this section we will look at the language used to describe the
transformations as well as at the actual algorithm used by the transformation tool.

We have defined an XML-based language for the specification of transformations
between context models. It expresses mappings between elements of a more abstract

3 The remaining two versions have been left out for lack of space.
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−− Time between r e c e i p t o f r e q u e s t and send ing o f r espo nse
q u a l i t y c h a r a c t e r i s t i c r e s p o n s et i m e 1 ( op : O p e r a t i o n ) {

domain : numeric r e a l [0 . . ) m i l l i s e c o n d s ;

5 va lues : −− The f o l l o w i n g has been s u b s t i t u t e d f o r
−− op . i n v o c a t i o n s−>l a s t ( ) . end
( l e t op1 : O p e r a t i o n

= op . i n v o c a t i o n s−>l a s t ( )
. o p e r a t i o n

10 −>s e l e c t ( o p e r a t i o n a l I n t e r f a c e
. component
. p r o v i d e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
15 i n

op1 . SE−>l a s t ( ) . t ime ( ) ) −
−− The f o l l o w i n g has been s u b s t i t u t e d f o r
−− op . i n v o c a t i o n s−>l a s t ( ) . s t a r t
( l e t op1 : O p e r a t i o n

20 = op . i n v o c a t i o n s−>l a s t ( )
. o p e r a t i o n
−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

. component

. p r o v i d e d i n t e r f a c e s
25 −>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
i n

op1 . SR−>l a s t ( ) . t ime ( ) ) ;
}

30
. . .

−− Time between send ing o f r e q u e s t and r e c e i p t o f r espo nse
q u a l i t y c h a r a c t e r i s t i c r e s p o n s et i m e 4 ( op : O p e r a t i o n ) {

35 domain : numeric r e a l [0 . . ) m i l l i s e c o n d s ;

va lues : −− The f o l l o w i n g has been s u b s t i t u t e d f o r
−− op . i n v o c a t i o n s−>l a s t ( ) . end
( l e t op1 : O p e r a t i o n

40 = op . i n v o c a t i o n s−>l a s t ( )
. o p e r a t i o n
−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

. component

. u s e d i n t e r f a c e s
45 −>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
i n

op1 . SR−>l a s t ( ) . t ime ( ) ) −
−− The f o l l o w i n g has been s u b s t i t u t e d f o r

50 −− op . i n v o c a t i o n s−>l a s t ( ) . s t a r t
( l e t op1 : O p e r a t i o n

= op . i n v o c a t i o n s−>l a s t ( )
. o p e r a t i o n
−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

55 . component
. u s e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
i n

60 op1 . SE−>l a s t ( ) . t ime ( ) ) ;
}

Listing 1.2. Refined versions of response time definition
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and a more detailed context model. An excerpt from the transformation descriptor for
our two sample context models can be seen in Listing 1.3. Note that some of the text
in the transformation specification is CQML+ code. These pieces are code templates
which are to be substituted for pieces of expressions in the more abstract model. We
have omitted most of the trivial mappings, giving only the mapping forComponent
as an example. It can be seen that we distinguish two kinds of transformations:

1. Classifier transformations(cf. Line 2 in Listing 1.3) which are essentially type
replacements.

2. Feature transformationswhich replace features from the coarse model with expres-
sions in the finer model. The measurement designer specifies expressions giving
the value of features from the coarser context model in terms of the elements of
the finer context model. This is used for features which are no longer present in the
finer model. For example the transformation definition on Line 8 defines expres-
sions that can be used to determine the value denoted by thestart attribute of
the OperationCall classifier in the coarse model. The fact that there are two
target expressions indicates that this aspect of the model has been enriched with
information in the refinement.

We are aware that there may be other transformation types, but so far all examples
we have looked up could be successfully handled with these two types. When trans-
forming the specification of a characteristic, the transformation tool applies the trans-
formations described by eachtransform -tag to each usage of the element/feature
specified by theelement attribute in the specification of the characteristic. Because
there is some indeterminism in the mappings, the transformation will result in more than
one version of response time. In one generated version the choice of target expression
must be consistent for everytransform -tag. Multiple occurrences of a feature in the
original expression must be replaced by the same expression in the refined version.

There is some difference in the way classifier and feature transformations are han-
dled. While classifier transformations are simple replacements of types by another type,
feature transformations require some more work: Here the transformation rule defines a
template expression that is to be substituted for the expression referencing the feature.
Each expression referencing some feature has the general formowner.feature ,
whereowner can be any expression andfeature is the name of a feature. During
the transformation, the owner part of this expression is inserted into the target expres-
sion at the places indicated by the identifier declared to be theownerRef (see Line 8
of Listing 1.3) before the whole expression is substituted. Another issue to be taken into
consideration is uniqueness of names. Names defined in the target expression template
may clash with names defined or visible in the expression that is being transformed.
To avoid such clashes, all names defined inlet -statements in the target expression
template are appended the smallest positive number that makes them unique.

The response time specifications in Listing 1.2 have been generated from the defini-
tion in Listing 1.1 using the algorithm and the sample transformation descriptor above.
The numbers correspond to Fig. 2. Note how thestart andend expressions have
been replaced by the corresponding target expressions. All combinations of target ex-
pressions have been used in generation. However, to save space, only the two most
important versions have been included in this paper.
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<r e f i n e m e n t x f o r m from=” c o a r s e . xmi ” t o =” f i n e . xmi ”>
<t r a n s f o r m c l a s s i f i e r =” Component ”>

< t a r g e t c l a s s i f i e r =” Component ” />
</ t r a n s f o r m>

5
. . .

<t r a n s f o r m f e a t u r e =” O p e r a t i o n C a l l : : s t a r t ” ownerRef=” owner ”>
< t a r g e t e x p r e s s i o n>

10 l e t op : O p e r a t i o n
= owner . o p e r a t i o n−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

. component

. p r o v i d e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

15 )
i n

op . SR−>l a s t ( ) . t ime ( )
</ t a r g e t e x p r e s s i o n>
< t a r g e t e x p r e s s i o n>

20 l e t op : O p e r a t i o n
= owner . o p e r a t i o n−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

. component

. u s e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

25 )
i n

op . SE−>l a s t ( ) . t ime ( )
</ t a r g e t e x p r e s s i o n>

</ t r a n s f o r m>
30

<t r a n s f o r m f e a t u r e =” O p e r a t i o n C a l l : : e n d ” ownerRef=” owner ”>
< t a r g e t e x p r e s s i o n>

l e t op : O p e r a t i o n
= owner . o p e r a t i o n−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

35 . component
. p r o v i d e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
i n

40 op . SE−>l a s t ( ) . t ime ( )
</ t a r g e t e x p r e s s i o n>
< t a r g e t e x p r e s s i o n>

l e t op : O p e r a t i o n
= owner . o p e r a t i o n−>s e l e c t ( o p e r a t i o n a l I n t e r f a c e

45 . component
. u s e d i n t e r f a c e s
−>c o n t a i n s ( o p e r a t i o n a l I n t e r f a c e )

)
i n

50 op . SR−>l a s t ( ) . t ime ( )
</ t a r g e t e x p r e s s i o n>

</ t r a n s f o r m>
</ r e f i n e m e n t x f o r m>

Listing 1.3. Sample transformation descriptor. The XML code has been slightly
simplified to enhance readability
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6 Related Work

VEST [22] is a design toolkit for component-based systems which focuses on non-
functional properties. It uses an extended notion of aspects [11] to allowen-blocmod-
ifications to the non-functional specifications of individual components, thus effecting
changes to the global non-functional specification of a system. Our work does not use
aspects, although they could probably be combined with our approach. The major dif-
ference between our approach and the VEST approach is that we use context models at
different levels of abstraction, while all work in VEST is tied directly to the component
model provided by the target environment (Boeing’s Bold Stroke in this case).

Model-Driven-Architecture (MDA) [12] is an important current development. Trans-
formation between models is at the heart of this technology. Our work fits well into this
larger view, although to the best of our knowledge we are the first to apply model trans-
formations to measurement refinement. The new Query/Views/Transformations spec-
ification for which the Object Management Group (OMG) has issued a request for
proposals [15] will be of great importance for our work. We can use the concept of
views to relate context models and application models, and we can use the transforma-
tion technologies defined to implement our transformation tool. [21] describes an MDA
technology for the creation of QoS-aware applications. The main focus is on the trans-
formation of application models and weaving in of non-functional aspects. Refinement
of non-functional specifications is not considered. CoSMIC [6] is an MDA tool suite for
supporting model driven middleware. The tool supports only application development,
deployment and configuration, but no refinement of non-functional models.

QCCS [19] describes a methodology for the development of contract-aware com-
ponents. This methodology covers only the application design. Our refinement step
can be used both in requirements analysis and application design. It is embedded in a
process which reckons with non-functional properties from requirements to code [2].
QCCS also provides UML model transformation based on aspect-oriented design [10].
The authors of [19] propose to weave non-functional constraints and functional aspects
at application modelling time. In contrast, our methodology keeps non-functional and
functional aspects separate until implementation time.

7 Conclusions and Open Questions

Non-functional properties must be considered throughout the development cycle of an
application system. The application designer creates, and thinks about, functional mod-
els at different levels of abstraction. He should be able to do so with non-functional
models, too. We have introduced the concept of explicitly defined context models of
measurements which explicitly capture the level of abstraction of a measurement. Ad-
ditionally, we enable tool support for refinement of non-functional specifications by
requiring transformations between context models to be defined and applying them to
measurement definitions.

Furthermore, we have outlined a software development process which separates
the roles of measurement designer and application designer. It is the measurement de-
signer’s responsibility to specify measurements, context models and transformations
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between context models, all of which can then be used by the application designer
when developing an application. Thus, the application designer is free to focus on the
business logic.

The refinement process prompts for decisions when they are needed. We have in-
dicated two points where this happens: a) in the actual refinement step, where the ap-
plication designer needs to choose between different refinements of a measurement,
and b) after a refinement has taken place, when the analysis tool cannot compare con-
straints on different refinements. In the latter case, the application designer will also
need to refine the functional model by making explicit the effect caused by communi-
cation between components. We have shown how connectors can be used to model this.
Defining these connectors, building libraries, and integrating the connectors into appli-
cation models is still a research issue, although some approaches can be found in the
literature. One important question, among others, is whether the usage of connectors
we have sketched for response time also works for characteristics which are not time-
related. On a more general note, we would like to propose the interaction of refinements
to the functional and the non-functional model as an interesting research area.

It is important to point out, that, although we have explained our approach with two
context models only, it is intended to be generic. For any one measurement there could
be any number of context models and, correspondingly, any number of different levels
of abstraction. How this large number of models can be managed in a way that further
reduces the complexity for the application designer and makes choosing the next model
for refinement easy, is an area for further research.

This paper has focused on measurement refinement. Structural refinement is also an
important research topic. We plan to investigate this in our future work.

We are currently working on a tool set prototype to support our development pro-
cess. This prototype implements the concepts presented in this paper. Context models
are stored in a meta data repository [13], and we use model transformation techniques
to describe the mapping between context model and application model.
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