
OCL 2.0 - UML 2003 Preliminary Version

A Metamodel-Based OCL-Compiler
for UML and MOF

Sten Loecher, Stefan Ocke 1,2

Department of Computer Science
Dresden University of Technology

Dresden, Germany

Abstract

After becoming part of the UML standard, OCL has been applied successfully in
various domains. As a result, requirements to be met by future versions of OCL
have evolved. A key requirement is to provide means for the formal integration of
OCL and UML. Therefore, the latest proposal for a revised specification of OCL
contains a metamodel defining the language concepts and semantics. Based on
this metamodel, we are currently redesigning the Dresden OCL Toolkit. Apart
from basic functionality for processing OCL expressions, the toolkit is designed
to support the evaluation of well-formedness rules defined on both models and
metamodels. In this paper, we introduce the revised architecture of the toolkit.
The alignment of OCL with UML and MOF is discussed and several concepts for
the explicit modelling of dependencies between these metamodels are presented.
Finally, we prove the adequacy of our design by presenting a code generator for the
evaluation of well-formedness rules.

Key words: OCL, MOF, UML, metamodelling, compiler

1 Introduction

In the past few years, the Object Constraint Language (OCL)[12] has evolved
from being merely an extension of the Unified Modeling Language (UML)[7]
to representing an integral part of it. The original purpose of OCL was to
precisely express constraints over object models in terms of preconditions,
postconditions, or invariants. Users soon realized the potential for alterna-
tive applications. The usage in according scenarios resulted in a number of

1 Email: Sten.Loecher@inf.tu.dresden.de
2 Email: so3@wh2.tu-dresden.de
3 This work was supported by grants of the Deutsche Forschungsgemeinschaft,
Graduiertenkolleg 191.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Loecher and Ocke

requirements to be met by future versions of the specification language, such
as the incorporation of concepts like message expressions and tuple types.

The latest response to the UML 2.0 OCL request for proposal [1] therefore
contains a completely reworked specification of the OCL, which defines it as
a general query language that can be used everywhere in UML models to
express desired properties. In contrast to earlier versions of the OCL, this
response contains a definition of the OCL concepts and semantics by means of
a metamodel compliant to the Meta Object Facility (MOF)[8]. The provision
of the OCL metamodel is motivated by the prospective integration of OCL
with the UML metamodel as investigated for example in [11]. It also serves
as a basis for efficient development of tool support.

Our current work aims at redesigning the Dresden OCL Toolkit [4] to sup-
port OCL as defined by the metamodel in [1]. On the one hand, the toolkit is
designed to provide basic functionality for processing OCL expressions, such
as parsing, type checking, and code generation. On the other hand, the toolkit
design is driven by the requirement to support both the evaluation of well-
formedness rules (WFR) defined on metamodels and constraints on normal
models. As a first step we have developed an appropriate OCL compiler in-
frastructure that is based on current specifications of the UML and MOF
(version 1.4 of both). A major part of our work concerned the alignment
of the OCL metamodel to the metamodels of UML and MOF. The align-
ment was necessary because of dependencies defined between OCL and UML
metamodel and the requirement to support WFRs on metamodels, which are
actually MOF models. Solutions to several problems have been elaborated
and a common interface of OCL to UML and MOF has been developed. We
think that the results presented in this paper can be useful for the prospective
alignment of OCL and UML version 2.0. To demonstrate the adequacy of our
design, a code generator has been developed to generate Java expressions by
which well-formedness rules over metamodels can be evaluated.

After a discussion of related work and a number of preliminary issues in
Sections 2 and 3, the general architecture of the OCL compiler is introduced
in Section 4. Section 5 discusses the alignment of OCL to UML and MOF.
The code generation is presented in Section 6. We conclude by summarizing
the results of our work and give a short outlook about our future work in
section 7.

2 Related Work

Based on version 1.3 of the OCL specification, our group has already devel-
oped the Dresden OCL Toolkit [4,5,3,13]. It features a modularly structured
OCL compiler that provides a set of interfaces for easy enhancement and in-
tegration into different software engineering environments. With the toolkit
it is possible to process preconditions, postconditions, and invariants on UML
models. Code generators have been developed for Java and the Structured

2

Loecher and Ocke

Query Language (SQL) and the usage of the toolkit within several projects,
partly in conjunction with partners in industry, has led to extensive tests and
eventually to a solid foundation for OCL support. In our current work, we
use artifacts from this earlier toolset, e.g. an OCL Basis Library.

[10] describes the USE tool, which can evaluate OCL expressions over UML
models. It provides functionality to describe models on a textual basis and
associated OCL expressions and to create instances, so-called snapshots, of
them. The OCL expressions are evaluated based on these snapshots. Basically,
these models can also be metamodels and therefore can be subject to OCL
expression evaluation. Differences between the OCL expression evaluation in
[10] and our tool concern the used metamodels and the kind of OCL expression
evaluation. Whereas USE is based on a small core of the UML and a precursor
of the OCL metamodel, our tool is based on proposed and accepted standards
of the Object Management Group (OMG). Furthermore, in contrast to our
toolkit, USE does not generate code for the evaluation of OCL expressions
but uses interpretation.

3 Preliminaries

This section discusses some preliminary issues concerning terms and technolo-
gies used throughout this paper. The discussion is centered around the MOF
metadata architecture, which is introduced first. Terms like XML Metadata
Interchange (XMI) and Java Metadata Interface (JMI) are explained subse-
quently.

The MOF, defined by the OMG, aims at providing a framework for the
management of metadata. It comprises a layered metadata architecture and
a meta-metamodel. Figure 1 illustrates the metadata architecture by an ex-
ample containing metamodels for representing UML diagrams and OCL ex-
pressions. The layers are numbered consecutively from M0 to M3. The data
on each layer is described by the model one layer up, e.g. actual data and
objects are modeled by UML models which are themselves instances of the
UML metamodel. The UML metamodel itself is described in terms of the
MOF meta-metamodel. This meta-metamodel, or MOF model, is object-
oriented and includes an essential set of modeling constructs aligned with a
specific subset of UML object modeling constructs. The MOF model on its
part is self-describing, i.e., it is formally defined using its own metamodelling
constructs.

OCL is defined by a metamodel with dependencies to elements of the UML
metamodel and allows to write OCL expressions for UML models, which reside
on layer M1. Since metamodels on M2 layer are instances of the MOF model
but OCL is rather designed to write expressions for models on M1 layer,
the specification of WFRs by OCL would not be possible without having an
adapted OCL metamodel for MOF. Section 5 describes how to adapt the
original OCL metamodel in order to be used for the specification of WFRs on

3

Loecher and Ocke

Fig. 1. MOF Metadata Architecture.

M2 layer.

The MOF metadata architecture provides the foundation for the defini-
tion of XMI, which describes a standard for the exchange of models among
software engineering tools. XMI comprises DTD 4 and document production
rules. The DTD production rules are used to describe the generation of DTDs
from metamodels (M2) whereas the document production rules describe the
generation of XML documents from actual models (M1). The XML documents
containing the UML metamodel and MOF model for example are provided by
the OMG.

XMI enables the exchange of data between tools. For tools to share data
located in a common repository, JMI and the MOF-IDL mapping provide
the technology to generate interfaces from arbitrary metamodels (M2) which
are then used to access according instances (M1) or to perform necessary
operations on them. Whereas JMI describes the production of Java interfaces
and is not part of the OMG standards, the MOF-IDL mapping is part of the
MOF specification and describes the production of CORBA-IDL interfaces.

4 Compiler Architecture

The general architecture of the compiler, illustrated by Figure 2, is deter-
mined by the requirement to develop a toolkit based on standardized meta-
models. Therefore, the primary component of the architecture is a MOF
repository. The purpose of the repository is to manage models and meta-

4 Document Type Definition

4

Loecher and Ocke

Fig. 2. Compiler Architecture.

models, to generate particular interfaces for accessing these models, and to
provide implementations for the interfaces according to given specifications.
The interfaces provided by the MOF repository can be classified with respect
to their functionality 5 :

IRepository comprises operations for loading and saving models and meta-
models via XMI and operations for generation of JMI interfaces from meta-
models. Since the standardization of IRepository is not currently part of
MOF, the interface is at the moment of a rather proprietary nature.

IMofOcl and IUmlOcl are sets of JMI interfaces generated from the MOF
1.4 and the UML 1.4 metamodel, respectively. The metamodels are appro-
priately integrated with the specific OCL metamodel, namely MOF-OCL
and UML-OCL. Section 5 provides detailed information about the individ-
ual metamodels and the subject of integration.

ICommon is a set of JMI interfaces that enable access to instances of the
OCL metamodel in a transparent way, independent of MOF or UML. They
abstract common concepts of IMofOcl and IUmlOcl. Details about the com-
mon interface and its relations to UML and MOF are described in section
5.1.

IReflective is a set of reflective JMI interfaces that enable to access models
without the generated metamodel-specific interfaces. These interfaces are
used during the evaluation of WFRs, for example. Section 6 provides more
information on this particular subject.

The interfaces explained so far are used by several components to accomplish
standard tasks like parsing or more specialized tasks like code generation. A
parser basically transforms OCL expressions, stated for a metamodel or UML
model, from concrete syntax into abstract syntax. That is, it creates instances

5 Sets of interfaces are illustrated by double circles in Figure 2.

5

Loecher and Ocke

of the MOF-specific or UML-specific OCL metamodel in the repository. An
example code generator for the evaluation of WFRs is discussed in more detail
in section 6. It has been developed to test the compiler architecture and to
prove its adequacy. We would like to emphasize that the parser uses ICommon
exclusively. That is, the same parser can be used to work with UML and MOF
models. Besides that, the code generator is to a large extent decoupled from
the MOF metamodel. Only in case of MOF-specific information, it has to fall
back on IMofOcl.

Figure 2 also shows a client to illustrate the use of the toolkit. This client
could be, for example, a transformation engine according to the upcoming
MOF 2 QVT standard [9] that uses OCL as query language for models. After
loading a metamodel into the repository via IRepository, the parser is used
to create OCL metamodel instances from OCL expressions. The code gen-
erator is used afterwards to generate appropriate code to evaluate the OCL
expressions for arbitrary instances of the metamodel loaded at the beginning.
The instances themselves can also be created by using IRepository.

To realize this architecture, we had to make a decision on what MOF
repository to use for our toolset. After an evaluation and comparison of several
MOF repository implementations we decided to use the NetBeans Metadata
Repository [6]. This product is part of the NetBeans Integrated Development
Environment, but can be used as a standalone tool as well.

5 Alignment of OCL to MOF and UML

This section discusses the alignment of OCL to MOF and UML. After a dis-
cussion of the differences between MOF and UML core, we introduce an ab-
stract interface that allows to access instances of the OCL metamodel inde-
pendently of the UML-specific or MOF-specific metamodels. We then present
an adapter-based solution for the mapping between MOF and OCL datatypes.
Finally, we show how the WFRs of OCL can be decoupled from the internal
structure of the UML.

5.1 Common OCL Metamodel

As mentioned previously, OCL is expected to be integrated with the common
core of MOF version 2 and UML version 2 in the long run. The current
version of the OCL submission [1] is based on UML version 1.4. Due to our
requirement to enable the evaluation of WFRs on metamodels, the current
OCL metamodel had to be integrated with MOF 1.4 as well. Because of
differences between MOF 1.4 and the core of UML 1.4 it was necessary to
introduce an abstraction layer that comprises common concepts of MOF and
UML that are used by the OCL metamodel. In the following, the differences
between MOF and UML are described and the structure of the common OCL
metamodel that uses the MOF/UML abstraction is explained.

6

Loecher and Ocke

5.1.1 Differences between MOF and UML Core

Chapter 8 of the current OCL submission provides a list of all classes of the
UML metamodel that are used by the OCL metamodel. By looking for their
equivalents in MOF 1.4, three cases can be distinguished:

(1) There is an adequate class in MOF that may be named differently. For
example, the OCL metamodel uses the UML metaclass Classifier as
supertype for all classes of the Types package. This way, properties of
Classifier - like the ability of having operations - can be reused by
the OCL types. In MOF on the other hand, there is a metaclass called
Classifier as well but instances are not allowed to have operations.
Instead, only instances of metaclass Class may have operations. That is,
Class is the right choice for an equivalent of Classifier in MOF.

(2) There is a similar concept in MOF, but it is not modeled by a separate
class. There is for example an Association between EnumLiteralExp in
the OCL metamodel and EnumerationLiteral in the UML metamodel.
MOF knows the concept of enumerations as well, but there is no separate
class for enumeration literals. Rather, enumeration literals are stated by
the multivalued attribute labels in the metaclass EnumerationType.

(3) There is no comparable concept in MOF. For instance, the UML metaclass
AssociationClass is referenced by the OCL metaclass
AssociationClassCallExp. In MOF, association classes are not sup-
ported in any way.

As explained in the following section, problems (1) and (3) are solved by
the introduction of the MOF/UML abstraction layer, while (2) requires the
introduction of adapters for MOF.

Whereas the metaclasses of MOF and UML core are generally quite similar,
the associations between them are very different. Since the WFRs of the
OCL metamodel and the rules for the abstract syntax mapping navigate along
such internal associations of the UML metamodel, they cannot be directly
applied to MOF. Therefore, Section 5.3 introduces additional operations in the
MOF/UML abstraction layer that encapsulate internal navigations through
the UML metamodel.

5.1.2 Structure of the Common OCL Metamodel

The package structure of the common OCL metamodel is illustrated by Figure
3. Common-OCL is the central element of the abstraction. It can be accessed
through the ICommon interfaces, which are generated from this package re-
spectively from the contained classes by the MOF repository. Common-OCL

comprises CommonModel on the one hand and the Expressions and Types

packages on the other hand. The package CommonModel provides abstrac-
tions for the UML metaclasses that are used by the Expressions and Types

packages of the OCL metamodel. The latter do not exclusively exist within
Common-OCL but also within the individual OCL metamodels aligned to MOF

7

Loecher and Ocke

Fig. 3. Packages of Common OCL Metamodel.

and UML, which are contained within MOF-OCL and UML-OCL. Classes from
the individual OCL metamodels inherit from the according abstract classes
in Common-OCL and have relations to respective classes of the MOF or UML
metamodel. The reader should be aware that instances of the OCL metamodel
are either instances of MOF-OCL or UML-OCL.

The package UML-OCL contains the OCL metamodel defined in [1]. It has
dependencies on the UML metamodel due to association and generalization
relationships. The packages UML and UML-OCL serve as the basis for generating
IUmlOcl. These interfaces are accessed, for example, by a code generator for
OCL expressions in UML models.

Figure 4 gives an example of the relations between Common-OCL and
UML-OCL: the class CollectionType from the Types package. To reuse the
association between Classifier and Operation in the UML metamodel 6 ,
CollectionType in UML-OCL inherits from UML::Core::Classifier. In
CommonModel, there is no association between Classifier and Operation,
because an according association would not model the reuse of the already ex-
isting association in UML properly. Instead, the operations are made accessible
by defining the additional operation lookupOperation() for Classifier.

For the case of MOF, which is not illustrated in Figure 4,
MOF-OCL::Types:CollectionType inherits from MOF::Model::Class, because
MOF::Model::Classifier cannot have operations.

6 In Figure 4, this relation is shown simplified.

8

Loecher and Ocke

Fig. 4. CollectionType and Classifier in Common-OCL and UML-OCL.

5.2 Adapters for MOF and Datatype Mapping

MOF defines its own datatype schema, providing metaclasses for constructing
primitive types, structured types, collection types, and enumeration types.
With the exception of primitive types like Integer and String, all types are user-
defined. In contrast to the datatypes defined in the OCL Standard Library,
the MOF datatypes cannot have any operations, because they do not inherit
from MOF::Model::Class. Consider, for example, a metamodel containing a
class A that has an attribute x of type Integer. To represent a simple OCL
constraint like

context A inv: x > 0

in abstract syntax, x has to be treated as an attribute of the primitive OCL
datatype Integer. When applied to a MOF model, the constraint cannot be
modeled, because x has to be treated as having the primitive MOF datatype
Integer. That is, the operation call to ”greater than” is not available. Thus,
a mapping between MOF and OCL datatypes is necessary.

Figure 5 depicts the mapping for primitive types as implemented in the
toolkit. As shown on the left side, MOF classes do not need to be mapped
and can be used as OCL types. However, instances of MOF::Model::DataType
inherit from Classifier and therefore lack the ability to possess any opera-
tions. Therefore, the adapter AdDataType is introduced whose instances rep-
resent OCL equivalents of MOF datatypes. AdDataType inherits from Class

and has therefore the ability of possessing Operations.

9

Loecher and Ocke

Fig. 5. Type Mapping for PrimitiveType.

With the help of AdDataType and the association TypeMapping, the map-
ping for an arbitrary MOF classifier can be described by the following opera-
tion:

context MOF::Model::Classifier
def: toOclType() : MOF::Model::Class

= if self.oclIsKindOf(MOF::Model::Class) then
self

else if self.oclIsKindOf(MOF::Model::DataType) then
self.oclAsType(MOF::Model::DataType).oclType

else
-- Associations are not mapped to OCL types
OclUndefined

endif
endif

Furthermore, the (non-injective) mapping for primitive types is specified by
the following constraint:

context MOF::Model::PrimitiveType
inv: self.oclType.oclIsTypeOf(MOF-OCL::Adapters::AdPrimitive)

10

Loecher and Ocke

inv: self.name = ’Boolean’ implies oclType.name = ’Boolean’
inv: self.name = ’Integer’ implies oclType.name = ’Integer’
inv: self.name = ’Long’ implies oclType.name = ’Integer’
inv: self.name = ’Float’ implies oclType.name = ’Real’
inv: self.name = ’Double’ implies oclType.name = ’Real’
inv: self.name = ’String’ implies oclType.name = ’String’

The mappings for the remaining MOF datatypes are modeled in a similar way.
The following table lists the relations between MOF datatype metaclasses and
the corresponding classes in Common-OCL:

MOF datatype metaclass OCL datatype metaclass

PrimitiveType Primitive

EnumerationType Enumeration

CollectionType CollectionType

StructureType TupleType

While it was necessary for primitive types to introduce an adapter
(AdPrimitive), this is not the case for CollectionType and TupleType. In-
stead, the according classes from MOF-OCL::Types are used directly. They
inherit from their counterparts in Common-OCL as well as from AdDataType.
For mapping of collection and structure types, the types of the elements or
fields need to be mapped as well. This is done by using the previously defined
operation toOclType().

As already mentioned in Section 5.1.1, EnumerationType needs special
treatment, because the OCL metamodel expects enumeration literals to be
modeled by a separate class whereas MOF models literals as the multivalued
attribute labels in EnumerationType. The mapping is realized by introduc-
ing two adapter classes, namely AdEnumeration and AdEnumerationLiteral.
The following constraint describes the relation between an EnumerationType
and the associated adapters:

context MOF::Model::EnumerationType
inv: oclType.oclIsTypeOf(MOF::Adapters::AdEnumeration) and

oclType.name = name and
oclType.oclAsType(MOF::Adapters::AdEnumeration).literal.name
= labels->asBag()

For UML it is necessary to map datatypes as well. Unlike MOF, UML does
not predefine any datatypes for UML models (it should be noted that there
is a difference between datatypes used in UML models and datatypes used
to define the UML metamodel, the latter are contained within the package
UML:Core::DataType). For example, some models may contain a primitive
type named ”Integer” whereas other models possibly call it ”int”. In both
cases, it is expected to be considered as the primitive OCL type Integer when
referring to it in OCL expressions. Therefore, the operation toOclType() is

11

Loecher and Ocke

age:Attribute

Integer:Primitive
type

type

referredAttribute

source
:AttributeCallExp

Fig. 6. WFR for AttributeCallExp.

defined for UML::Core::Classifier as well. While it has no effect on classes,
instances of UML:Core::DataType are mapped to OCL primitive types, as
long as they have a conventional name (like ”int” or ”Integer”). Datatypes
with unknown names will result in OclUndefined.

5.3 Well-formedness Rules

The well-formedness rules of the OCL metamodel navigate along internal as-
sociations of the UML metamodel and access attributes defined in UML meta-
classes. Due to these dependencies with UML, the WFRs cannot be applied
directly to MOF-OCL or Common-OCL.To decouple the WFRs from the in-
ternal structure of the UML metamodel, we introduce additional operations
for the CommonModel classes. Note, that this kind of decoupling is useful to
ease the alignment with UML 2.0 as well. As long as there are only changes
in the UML metamodel, but not in OCL, the WFRs do not need an update.
Only the helper operations have to be aligned, because they essentially give a
complete definition of the interface between OCL and UML.

The concept is illustrated by the following example WFR:

context AttributeCallExp

inv: self.type = self.referredAttribute.type

As illustrated in figure 6, the WFR navigates along two associations between
UML and OCL metamodel and along one internal association of the UML
metamodel. To avoid the latter, the helper operation getOclType() is de-
fined for Attribute on Common-OCL level and used in the WFR instead of the
association. It has distinct specifications for UML and MOF respectively:

12

Loecher and Ocke

context UML::Core::Attribute

def: getOclType() : OCL::CommonModel::Classifier

= self.type.toOclType()

context MOF::Model::Attribute

def: getOclType() : OCL::CommonModel::Classifier

= self.type.toOclType()

The definitions are different, because in the first case self.type means a
navigation from UML::Core::Attribute to UML::Core::Classifier but in
the second case from MOF::Model::Attribute to MOF::Model::Classifier.
As described in the previous chapter, the type of the attribute is mapped to
the according OCL type by the toOclType() operation.

6 Code Generation

To prove the adequacy of the compiler architecture and design, a code genera-
tor to support the evaluation of WFRs has been developed. For this purpose,
we use an existing OCL Standard Library previously developed for the Dresden
OCL Toolkit. After a discussion of the standard library adaptation in section
6.1, the transformation of OCL metamodel instances into code is described in
section 6.2.

6.1 OCL Basis Library

In [2] a Java implementation of the OCL Standard Library, called OCL Ba-
sis Library in this paper, has been presented. Primarily designed to support
run-time OCL constraint checking in Java programs, it uses Java reflection to
access model information. Since we aim at generating code for the evaluation
of OCL expression over metamodels, an implementation of the library that
supports model access via JMI reflection is required. Figure 7 depicts the
main artifacts of the new library. The actual implementation of OCL types
like Integer, Boolean, or Set has been reused to a large extent. To improve
the design and increase the reusability of the library, an interface for flexible
replacement of the actual model access implementation has been developed.
According classes have been introduced, for example OclModelObject and
OclEnumLiteral, which provide template methods to be implemented by ac-
tual model access classes. OclModelObject provides, for example, methods
for getting attribute values or invoking operations of objects from the model.
For model access through JMI it is implemented by JmiModelObject.

The following code fragment for the example invariant

context A inv: x>0

shows an example usage of the redesigned OCL Basis Library:

13

Loecher and Ocke

Fig. 7. OCL Basis Library with reflective JMI Model Access.

public OclBoolean evaluate_example_constraint(OclModelObject self){
OclPrimitiveType intType = OclPrimitiveType.getOclInteger();
OclInteger x = Ocl.toOclInteger(self.getFeature(intType, "x"));
OclInteger zero = new OclInteger(0);
return x.isGreaterThan(zero);

}

The transformation of OCL expressions into such code fragments is described
in the following section.

6.2 Specification of Code Generation

The code generation described here is a transformation that has instances
of the OCL metamodel as input and Java code as output. We specify the
transformation by using OCL in a similar way as the abstract syntax mapping
in the OCL submission is stated.

In the following, the specification of code generation is demonstrated by
the quite simple transformation rule for IfExp, which is defined as shown in

14

Loecher and Ocke

Fig. 8. Definition of the IfExp.

Fig. 9. Environment for Code Generation.

Figure 8:

context IfExp
def: appendJavaCode(env: Env) : Env =
let javaOclType : String = self.type.mapToJavaOcl(env, true) in
let withCond : Env = self.condition.appendJavaCode(env) in
let withThen : Env = self.thenExpression.appendJavaCode(withCond) in
let withElse : Env = self.elseExpression.appendJavaCode(withThen) in
let withId : Env = withElse.createId(self) in
withId.appendLine(’final $1 $2 = $3;’,

Sequence{javaOclType, withId.getId(self),
Cast::withCast(javaOclType,’$1.ifThenElse($2,$3)’,

Sequence{withId.getId(condition),
withId.getId(thenExpression),
withId.getId(elseExpression)})})

The code generation for all subclasses of OclExpression is specified as an
operation appendJavaCode(), which expects an argument of type Env. This
environment, see figure 9, contains the current state of the code generation.
That is, it holds the code generated so far as well as all identifiers created for
sub-expressions and variables. The operation appendJavaCode() results in a
new environment containing the code generated by the specified transforma-
tion rule. The let-expressions are used

• to determine the IfExp type and the corresponding class name within the
OCL Basis Library (javaOclType);

15

Loecher and Ocke

• to get the code for the three sub-expressions of IfExp, namely withCond,
withThen, and withElse;

• and to create an identifier for the expression (withID), which is added to
the environment.

Note, that all operations on environment are without side effects. They do
not alter the state of the environment but yield a new environment, that is a
”clone” of the original one with some changes.

The operation appendLine() adds a line of code to the environment. The
template parameters stated in the code string, such as $1, are replaced by the
arguments given as a sequence.

The generated code uses the method ifThenElse(), which is defined in
OclBoolean. This method has the return type OclRoot, the common superin-
terface of all classes in the OCL Basis Library. Thus, it is necessary to insert
a type cast into the code, which yields the proper type of the IfExp. The op-
eration getId() results in the identifier for the IfExp that has been created
before by createId().

7 Summary and Outlook

In this paper, we have introduced the general architecture of a metamodel-
based OCL compiler that is based on a MOF repository. The key requirements
of the OCL compiler are: to be based on standardized metamodels and to
support the evaluation of well-formedness rules on them.

For this, we had to align the OCL metamodel, defined by the latest re-
sponse to the UML 2.0 OCL request for proposal, with current versions of the
UML and MOF. We introduced several concepts for the alignment, namely
a common interface for MOF and UML to OCL, adapters at meta-level,
datatype mapping between OCL and MOF, and the decoupling of WFRs
from the respective metamodels by appropriate operations. We think that the
proposed concepts could be useful for the upcoming alignment of OCL with
UML version 2.0. To prove the adequacy of our approach, a code generator
to support the evaluation of WFRs has been presented.

We can already present a prototype of the metamodel-based OCL com-
piler that comprises the MOF repository implementation and the presented
code generator by which we can demonstrate the code generation for selected
WFRs. At the moment, a parser module is under development based on the
current proposal for the OCL specification. We are investigating, to which ex-
tent a parser can be generated automatically from the provided specification.

For concepts to be applied in practice, efficient tool support is essential.
From our point of view, the latest proposal for the OCL specification is a major
step towards moving OCL from scientific playground to industrial practice. It
provides the right starting point for the efficient development of OCL tool
support.

16

Loecher and Ocke

Acknowledgement. The authors would like to thank Steffen Zschaler
for his valuable remarks and suggestions to this paper.

References

[1] Boldsoft, Rational Software Corporation, IONA, and Adaptive Ltd. Response
to the UML 2.0 OCL RfP (OMG Document ad/2003-01-07), revised
submission,version 1.6, January 6 2003.

[2] Frank Finger. Java-Implementierung der OCL-Basisbibliothek. http://www-
st.inf.tu-dresden.de/ocl/ff3/beleg.pdf, July 1999.

[3] Frank Finger. Design and Implementation of a Modular OCL Compiler.
http://www-st.inf.tu-dresden.de/ocl/ff3/diplom.pdf, March 2000.

[4] Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular Architecture
for a Toolset Supporting OCL. In <<UML>> 2000, The Unified Modeling
Language, 3rd International Conference, York, UK. LNCS 1939. Springer, 2000.

[5] Heinrich Hussmann, Birgit Demuth, and Sten Loecher. OCL as Specification
Language for Business Rules in Database Applications. In <<UML>> 2001, The
Unified Modeling Language, 4th International Conference, Toronto, Canada.
LNCS 2185. Springer, October 2001.

[6] Sun Microsystems. Metadata repository. http://mdr.netbeans.org.

[7] Object Management Group (OMG). Unified Modelling Language (UML)
specification, version 1.4, September 2001.

[8] Object Management Group (OMG). Meta Object Facility (MOF) specification,
version 1.4, April 2002.

[9] Object Management Group (OMG). Request for proposal: MOF 2.0 query /
views / transformations., October 2002.

[10] Mark Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universität Bremen, 2001.

[11] Mark Richters and Martin Gogolla. A Metamodel for OCL. In <<UML>>’99,
The Unified Modeling Language, 2nd International Conference, Fort Collins,
Colorado, USA. LNCS 1723. Springer, 1999.

[12] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

[13] Ralf Wiebicke. Utility Support for Checking OCL Business Rules in Java
Programs. http://rw7.de/ralf/diplom00/intro.html, December 2000.

17

	Introduction
	Related Work
	Preliminaries
	Compiler Architecture
	Alignment of OCL to MOF and UML
	Common OCL Metamodel
	Adapters for MOF and Datatype Mapping
	Well-formedness Rules

	Code Generation
	OCL Basis Library
	Specification of Code Generation

	Summary and Outlook
	References

