
An Integrated Facet-based Library
for Arbitrary Software Components

Matthias Schmidt1, Jan Polowinski1, Jendrik Johannes1, and
Miguel A. Fernández2

1 Technische Universität Dresden, Nöthnitzer Str. 46, 01187 Dresden, Germany
{matthias.schmidt|jan.polowinski|jendrik.johannes}@tu-dresden.de

2 Department of Broadband Service Platforms, Telefónica R&D, Valladolid, Spain
mafg@tid.es

Abstract. Reuse is an important means of reducing costs and effort
during the development of complex software systems. A major challenge
is to find suitable components in a large library with reasonable effort.
This becomes even harder in today’s development practice where a va-
riety of artefacts such as models and documents play an equally impor-
tant role as source code. Thus, different types of heterogeneous compo-
nents exist and require consideration in a component search process. One
flexible approach to structure (software component) libraries is faceted
classification. Faceted classifications and in particular faceted browsing
are nowadays widely used in online systems. This paper takes a fresh
approach towards using faceted classification in heterogeneous software
component libraries by transferring faceted browsing concepts from the
web to software component libraries. It presents an architecture and im-
plementation of such a library. This implementation is used to evaluate
the applicability of facets in the context of an industry-driven case study.

1 Introduction

Reusing software components has always been central to software engineering.
However, in practice, component reuse is still seldom implemented on a large
scale. A reason for this is the lack of generic solutions that fulfill the needs
of modern software development, where complex systems are not implemented
code-centric and do not only rely on the reuse of source code and binary com-
ponents. Instead, such systems are realized model-driven and models become
equally important reusable components.

In the Reuseware3 [7] project, we developed a generic solution to imple-
ment composition systems for model components defined in arbitrary modelling
languages. Thus, we provided a technical solution that allows developers to treat
all models4 created during a development process of a complex system as com-
ponents and store them in a library for reuse.

3 http://reuseware.org
4 In this paper we refer to all artefacts created in a model-driven process as models.

This includes documents and source code.

http://link.springer.com/chapter/10.1007/978-3-642-13595-8_21

2 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

However, a major problem in reuse in general, is locating a desired component
in a huge component library. About two decades ago, Pŕıeto-Diaz proposed [18,
19] the use of faceted classification, a concept from book libraries which was
introduced by Ranganathan in the 1930s, for software component libraries. Since
then, attempts were made to realize such classifications for specific component
libraries (e.g. [17]), but there has been little interest in this area in the last
decade.

Interestingly, concepts of faceted classification can be found today in many
online systems, such as e-commerce systems like Ebay or Amazon. These systems
make use of a faceted classification to enable faceted browsing that, in contrast
to traditional web-search, allows for explorative browsing.

The data queried on the web is not very different from the models that
make up complex modern software systems. In both cases, different languages
and methods are used in combination to specify and compose data. Also, to
integrate such heterogeneous data, standards (e.g., issued by the W3C or the
OMG) support the creation of common base technologies and tools.

In this paper, we recapitulate Prieto-Dı́az’s idea of using faceted classifica-
tion in software reuse by transferring faceted browsing concepts of today’s web
to software component libraries that meet the demands of model-driven devel-
opment. For that we take a closer look at component and model libraries as
well as facet technologies that are used today in Section 2. We present an ar-
chitecture and implementation of a facet-based software component library that
can handle heterogeneous models defined in arbitrary modelling languages in
Section 3. The implementation is based on widely used technologies and stan-
dards: The Eclipse Platform [4], the Eclipse Modeling Framework (EMF) [24]
and the OMG’s MOF standard [13]. We also explore how the greater amount
of structure in software components—compared to web data—can reduce the
classification effort. To show that the facet-based library can be used to browse
and search for different kinds of models, we evaluate it in the context of a case
study from the telecommunications domain defined by Telefónica R&D in the
European research project Modelplex5 and discuss other applications of it in
Section 4. Finally, we conclude in Section 5.

2 Foundations and Related Work

The idea of using a library to maintain a set of components is well known and
popular in software engineering. However, component libraries for reuse (called
reuse libraries in [11]) need to provide additional metadata about their content
in order to help users in deciding which component or service does fulfill their
needs the best.

As stated by Mili et. al. in their survey of reuse libraries [11], a good reuse so-
lution requires to be efficient, accurate, user-friendly and general. Furthermore,
the survey classifies the use of facets as a descriptive method and characterizes

5 http://www.modelplex.org

An Integrated Facet-based Library for Arbitrary Software Components 3

it using a number of criteria. In that way, it identifies the approach as a method
of high precision, recall and flexibility and rates the difficulty of use as very low
and the method’s transparency to the user as very high. As we see these charac-
teristics as crucial for a component library we argue to use faceted component
libraries for reuse.

To emphasize that other implementation methods for reuse libraries have
drawbacks we visit classic component libraries in Section 2.1, followed by a dis-
cussion of libraries for models in Section 2.2. Oriented at the mentioned require-
ments by Mili et. al., we aim to provide a facet-based library for model compo-
nents. For that, we transfer well established faceted browsing techniques from
online systems and present an implementation based on modelling standards
and technologies. The library integrats seamlessly into the widely used software
development and modelling environment Eclipse. Nevertheless, the solution is
general by being independent of the language a model component is defined in.
As a foundation of this solution, we introduce the main ideas of faceted classifi-
cation in Section 2.3 and analyse early approaches as well as recent applications
in Section 2.4.

2.1 Classic Component Libraries

As the main representatives of classic component libraries, we take a closer
look at CORBA6 and UDDI7. In principle, they implement different library
approaches but have main features in common. They manage a database of
components or services while users are able to register new components and
search for existing ones. In order to search the database, these systems often
implement a naming and/or directory service that give users the possibility to
search by name (keyword) or id. As this requires detailed knowledge about the
desired component or service there is a need for additional features to support
users that do not have this information available. These users would not search
by one concrete query but instead browse to get something adequate.

The CORBA middleware manages components as so called objects and offers
a naming service to find them. Besides that, trading and property services allow a
search based on component attributes [17]. Furthermore, a query service allows
reading and manipulating queries on a set of objects using languages such as
SQL or OQL. Although a search on the basis of attribute values is possible,
CORBA does not provide a method to search on structured metadata due to
a missing vocabulary of values. This does not allow for an efficient retrieval of
components [22]. As a result, users require detailed knowledge about what they
are searching for and might face a situation where effects such as synonyms,
antonyms or plural forms complicate the search process.

The directory service UDDI acts as a library for web services in the domain
of service oriented architectures (SOA). We see web services as a special case of
software components as they provide specific functionality over a well defined

6 http://www.corba.org
7 http://uddi.xml.org

4 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

interface. To describe services, UDDI offers attribute values and enumerated clas-
sification [17]. This is implemented by so called White, Yellow and Green Pages
which each focus on a specific service aspect. White Pages name attributes of the
business that offers the service, Yellow Pages use standard taxonomies such as
the North American Industry Classification System (NAICS) to classify business
and service while Green Pages include technical details. Hence, to search a web
service one can draw upon keywords, attribute values and enumerated classifi-
cations. As argued before, we do not see classifications by keywords or attribute
values as methods of efficient component retrieval. However, with Yellow Pages
UDDI also offers enumerated classification which provides a controlled vocabu-
lary and eliminates effects such as antonyms or plural forms. Nevertheless, we
do not think the taxonomies of the Yellow Pages to be adequate for classifying
software components, since taxonomies are too large, inflexible and difficult to
extend [22]. Although multiple taxonomies are allowed, the user is still required
to classify his artefacts in an existing complex schema that might not be designed
for his special purposes. Besides, UDDI itself does not support browsing a library
and therefore it does not seem appropriate for an exploration by users who do
not know in advance what is inside the library. The website seekda!8 adds con-
cepts such as tagging and community evaluation to the UDDI’s search engine.
That also supports our claim that the UDDI’s principles are not sufficient.

2.2 Component Libraries for Models

In addition to classic component libraries, we shortly analyse the field of com-
ponent libraries for models. In their research roadmap for model-driven devel-
opment of complex systems [1], France and Rumpe mention the need for reuse
of experience, libraries of model operations and full-featured model reposito-
ries. However, they do not explicitly request a method for intuitive browsing of
model repositories (or libraries). To the best of our knowledge, there is no work
aiming at building a reuse library (in the sense of Mili et. al.) for models in
model-driven development. Surely, libraries specific to modelling languages and
models (e.g., model libraries in SysML [15]) or specific to model operations (e.g.,
libraries of operation in Epsilon [10]) exist. But they are specific to a modelling
language and do not integrate concepts for browsing and finding models. Since
in model-driven development everything can be treated as a model (e.g., doc-
uments, model transformations, model management operations or metamodels)
all reuse concerns identified in the mentioned research roadmap can profit from
a reuse library for models that is independent of the language a model is defined
in.

2.3 Faceted Classification and Faceted Browsing

Faceted classification [21] combines principles from keyword classification and
enumerated classification. Keywords (facet values) describing an entity are bun-
dled into facets and each of these facets concerns only one single aspect to

8 http://seekda.com

An Integrated Facet-based Library for Arbitrary Software Components 5

characterize the entity. Examples are shown in Figure 1 as well as Table 1 and
2. Some facets may be structured and form trees, each representing a single
taxonomy, others may be flat [2, 6]. All facets as one create a multi-dimensional
classification.

Faceted Browsing is a userinterface paradigm based on flexible classification
and has the following principles [16, 23]: The process of faceted browsing inter-
actively constructs a query on the data while the user performs multiple simple
refinement steps. At the beginning a complete set of items is presented, which is
then reduced to a subset by making restrictions to the values of one or multiple
facets (zoom-in navigation step). The subset can again be extended by taking
back restrictions (zoom-out navigation step). Zoom-in and zoom-out navigation
steps may be performed for all facets in any order. Note that this enables the user
to choose his own navigation path—this is a main difference to fixed taxonomies
which imply that the user follows the way the taxonomy was once constructed
by its author. Another important feature of a faceted browser is the exclusion
of empty result sets by construction. For this purpose only facet values that are
available in the current result set are suggested as filtering options to the user.

As the system presents facets and facet values in the user interface, the user
gets an impression of which options are on-hand. This way he learns about
options he could not have named correctly in a textual query either because
he has only partial knowledge of the domain or simply because the options did
not come to his mind. Especially in this context, offering a description of the
meaning of facets and facet values can further add to the guidance of the user.

2.4 Facets in Use

Many application examples show that facets define an intuitive classification
schema. It is not only used in classic media libraries but was applied to software
component libraries two decades ago. [17, 18] describe experiences made with
component libraries that make use of faceted classifications. Although these ex-
amples characterize faceted classification as a promising approach, they can not
directly be applied to todays’ model-driven software development. At that time,
software components were defined as programmatic functionality for reuse. To-
day, heterogeneous artefacts such as models, documents or binary components
implemented in various languages need to be taken into account to support the
whole model-driven development process. Furthermore, the Internet has changed
the way components are delivered and today work is more and more shifted to a
community rather than to single persons. These new aspects of component reuse
require a new evaluation of faceted classification.

Since the first approaches for facet-based software component libraries were
introduced, other fields of application made use of faceted classifications. Hence,
today there are many websites and desktop applications using this approach to
browse huge amounts of data. Here, it is not always obvious that facets are used
because the terms category and filter are often used as synonyms. This seems
to be appropriate as they emphasize the structuring character and explain the
way faceted browsing is performed.

6 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

Fig. 1. Ebay uses facets to browse auctions

[16] analyses a number of websites, web technologies and desktop programs
that use faceted browsing. Applications such as iTunes9 and foobar200010 or
generic browsers such as Flamenco11, Exhibit12 and Longwell13 show that the
faceted browsing paradigm can be used in various fields of applications. In addi-
tion, websites such as Amazon14, Google Base15 or Ebay16 use faceted browsing
to give the user access to their dataset. Figure 1 shows Ebay as an example. Here
auctions of flash memory drives are presented which can be browsed using facets
such as Brand, Price, Interface or Condition. Depending on the auction’s type
other facets are shown which makes facets such as Megapixel or Optical Zoom
available for Digital Cameras. To sum up, all these examples show that faceted
browsing offers a flexible method of exploring arbitrary data.

3 A Facet-based Component Library

We see faceted classifications and faceted browsing, which has shown its applica-
bility in various online systems, as efficient and user-friendly methods to search
libraries of model components. To apply this in practice, a facet-based library
system is needed that is integrated into the user’s software development and
modelling environment.

This section introduces an architecture for such a system and a concrete im-
plementation that is based on the Eclipse Modeling Framework (EMF) [24] and
integrated into the Eclipse Platform. We chose these technologies over generic
browsers mentioned in Section 2.4, because Eclipse provides a popular platform

9 http://www.apple.com/itunes
10 http://foobar2000.audiohq.de/foo_facets
11 http://flamenco.berkeley.edu/
12 http://simile.mit.edu/wiki/Exhibit
13 http://simile.mit.edu/wiki/Longwell
14 http://www.amazon.com
15 http://base.google.com/
16 http://www.ebay.com

An Integrated Facet-based Library for Arbitrary Software Components 7

facet
1

value
1

decoratee
1

*

decoratee
1

BrowserState

FacetDecorator

presented

Facets

values 1..*

(a)

ValueDecorator

- count: int

- selected: boolean

FacetDefinition

facets
*

(b)

FacetValue

- name: String

- description: String

values
1..*

Facet
- name: String

- description: String

(c)

ComponentClassification

FacetInstance

facetInstances
*

Component User Component DeveloperFacet Developer

Fig. 2. Metamodel for faceted classification

for software development and modelling. Thus, the library integrates seamlessly
into the development and modelling environment, which turned out to be an
important usability factor (cf. Section 4.1).

The architecture is oriented towards the principle of faceted classification
and the userinterface paradigm of faceted browsing discussed in Section 2.3.
First, a domain expert—the facet developer—defines facets (Section 3.1) that
can be used by component developers to classify components in a second step
(Section 3.2). Third, component users browse the component repository by spec-
ifying faceted queries via zoom-in and zoom-out (Section 3.3). We captured the
concepts of faceted definition, component classification and component browsing
in a metamodel shown in Figure 2.

3.1 Facet Definition

We first discuss the concepts for facet definition that are shown in Figure 2 (b).
The facet developer has to perform a domain analysis in order to specify terms
and concepts of the domain in focus [20]. This leads to a number of Facets

which are grouped in a FacetDefinition. A Facet consists of a name and
a description that gives component developers an idea of the facet’s semantics.
Besides that, Facets own a set of FacetValues that have a name and description
as well. These three concepts allow the facet developer to define and maintain
facets and their vocabulary. FacetDefinitions are later available to component
developers to create ComponentClassifications (cf. Section 3.2).

Based on the metamodel we defined graphical user interface tooling that can
be used by the facet developer. The tooling is integrated into Eclipse and parts
of it are directly generated from the metamodel using EMF. The tooling includes
an editor that allows for creation of new facet definitions by instantiating the

8 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

Facet Description Examples

Composition Role The role the components
plays when composed with
other components

Port, Sender, Client

Information Hiding The degree of encapsulation
provided by a component

Whitebox, Greybox,
Blackbox

Language The language the component
is modelled in

UML, SysML, AADL
Java

License The legal agreement the com-
ponent is published under

GNU GPL, Mozilla
Eclipse Public License

Maturity The status of development or
usability the component is in

Alpha, Beta,
Released

System Layer The system architecture’s
level where the component is
to be used

GUI, Persistence,
Core, Transport

Table 1. General facets to classify components

metamodel. It furthermore supports the facet developer in deleting specifica-
tions, removing, adding or editing facets as well as deploying specifications to
component developers. Usually, facets have to be defined once for a specific com-
ponent type (e.g., for one modelling language) to capture domain concepts of
that component type. However, to capture the right domain concepts in Facets

and FacetValues, experimenting with classifying concrete components is often
required. Thus, having the facet definition tooling integrated in the same tool
that is used for component development (which is Eclipse in our case) is helpful.

Standard Facet Catalog In contrast to domain-specific facets, there are facets
to describe model components independently of their application domain. They
are inspired by facet sets mentioned in [17, 19] and target syntax, semantics,
composition interfaces and other implementation aspects of components. Table 1
shows an excerpt of these facets, which we provide as a standard catalog. They
can be used by component developers directly for general faceted classification of
software components. This standard catalog of facets is not closed or complete.
It is rather expected that there are additional facets sufficiently adequate to
classify model components independent of language and application domain.

3.2 Component Classification

Once facets are defined and deployed, components can be classified by component
developers. A ComponentClassification (Figure 2 (c)) classifies one component
and consists of a list of FacetInstances. A FacetInstance represents the usage
of one facet to classify a component and encapsulates the Facet itself and one

An Integrated Facet-based Library for Arbitrary Software Components 9

Fig. 3. The library’s component classification

FacetValue that describes the component best. Note that only facet values that
were assigned to the facet by the facet developer can be selected, thus ensuring
that the vocabulary is controlled. This is inline with the definition of faceted
classification in [17] which is not enforced by all faceted browsers.

Based on the metamodel, we defined graphical tooling that integrates into
Eclipse. Eclipse, which provides a wide range of editors to create and modify
all kinds of models, acts as component development environment. Thus, a com-
ponent developer can develop and classify model components in the same inte-
grated environment. Figure 3 shows a typical component classification example.
Here, a CIM model component (CIM is a domain-specific modelling language
that we will introduce in Section 4.1) is created in the CIM editor integrated
in Eclipse (a). Our tooling provides a special view (b) that is used to classify
the component in the currently active editor. This view offers the opportunity
to select available facets and choose one given value for each (c) to create a
ComponentClassification. The available facets were specified in a facet defi-
nition and loaded into the library beforehand. (In this example we use domain-
specific facets that are described in Section 4.1.) Additionally, some attributes
can be defined to add more information about the component (d).

10 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

Automated Classification The manual classification process in a facet-based
library can be costly and error-prone. This is because component developers
need to classify a potentially high number of components with facets defined by
facet developers (which are potentially different persons). Errors in the usage
of facets might occur if the semantics of a facet were not sufficiently defined.
Besides that, manually created component classifications might become invalid
when the component evolves.

These issues can be addressed by a rule-based automation of the classification
process. This approach uses information retrieval to generate a faceted classifica-
tion from the component itself. Software components qualify for this technique
because they are very low on free text [18] and have an inner structure—in
particular models that conform to a metamodel. This approach can relieve a
component developer from classifying components. Furthermore, the facet de-
veloper that creates the facet, gains control over how it is used. That means
no deep knowledge of the facet is needed by the component developer since the
facet developer makes sure that the facet is used in the intended way. In the end,
this approach allows to generate the classification at the latest point in time to
ensure that it reflects the current state of the software component.

In our implementation, all components are represented as EMF models within
Eclipse. The metamodels—that is, the languages in which the components are
written—are all defined in Ecore (an implementation of the OMG’s MOF stan-
dard). Thus, all components can be inspected using the OMG’s OCL [14] (which
is aligned with MOF) as a query language. We allow facet developers to define
automated classification rules in the form of OCL queries for arbitrary compo-
nent types. Consequently, this approach is directly usable by facet developers
who are familiar with the MOF and the OCL standards.

3.3 Component Browsing

After a faceted classification has been done and the components have been regis-
tered in the library, the component user can perform faceted browsing. The state
of the browsing is captured in a BrowserState (Figure 2 (a)). A BrowserState

holds a set of FacetDecorators where each refers to one of the facets that
is currently explored by the component user. ValueDecorators represent the
FacetValues the component user specifies to narrow down his search. Further-
more, ValueDecorator consists of a counter that indicates how many compo-
nents will remain in the result if the user selects the FacetValue and a flag to
represent the selection.

Following Figure 2 (a), we implemented a faceted browser that provides dif-
ferent facilities for the zoom-based exploration process (cf. Section 2.3) and sup-
ports different ways to present browsing results, following the works [16, 23]. The
features range from special widgets to present facets, over a free-text search to
features such as grouping and sorting. Figure 4 shows our faceted component
browser with important parts marked. These parts include the main functional-
ity of a faceted browser, which are the result view (A), a grouping and sorting
facility for the result view’s entries (B) as well as six widgets to present available

An Integrated Facet-based Library for Arbitrary Software Components 11

Fig. 4. The library’s faceted component browser

facets and their values (C). As there might be more than six facets available, a
separate view lists the others not presented (D). While the user selects facets
and values to perform zoom-in and zoom-out steps with (C) and (D), the current
search query is shown in another view (E). Finally, a search view gives the oppor-
tunity to perform a free-text search over available facets and classifications (F)
[6]. These features define a faceted browser that can be used to search arbitrary
model components classified in the way shown in Section 3.2.

After the component user has found a suitable component, he can directly
open other views or editors to inspect or to reuse the component. In our evalu-
ation, we used the browser together with Reuseware, which is also integrated
into Eclipse and provides a graphical composition editor. The component user
can directly drag&drop components from the result view (A) into Reuseware’s
composition editor. Thus, the browser integrates tightly with the component
users development environment.

4 Evaluation

To show the applicability of our facet-based library, we tested it with different
models defined in different modelling languages. In Section 4.1, we describe an
evaluation we performed with a domain-specific modelling language, where we

12 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

collected feedback from the domain experts on the usability of our approach
and our implementation. Furthermore, in Section 4.2, we discuss other types of
models and artefacts that can be browsed with our approach.

4.1 Evaluation with Telecommunication Domain Experts

We performed an evaluation of our facet-based library in the context of a case
study defined by Telefónica R&D in the European project Modelplex [12].
In the case study, Telefónica uses an EMF implementation of the Common In-
formation Model (CIM) [3] and an Eclipse-integrated graphical editor to define
graphical models of telecommunication networks [5]. In earlier work [9], we cre-
ated a composition environment with Reuseware that is also integrated into
Eclipse. This environment can be used to define reusable CIM model components
and compose them to larger network models. In this evaluation, we provided the
domain experts at Telefónica with the library tooling presented in this paper.
To gain a first feedback, their task was to classify 20 CIM model components
and then browse for components using the faceted browser.

In preparation for the evaluation, we created a set of domain-specific facets
for the CIM language. For that we performed, in collaboration with the domain
experts, a domain analysis and found a set of six facets (cf. Table 2). In addi-
tion to the general facets (cf. Table 1), they allow a classification specific for the
telecommunication domain. A telecommunication expert can now use our inte-
grated tooling to classify CIM models using the domain facets. Thus, he works
in the terminology of his domain and does not need any knowledge about, for
example, source code components or their classification. Other telecommunica-
tion experts can then use these domain-specific facets with our faceted browser
to browse a library of CIM model components.

The remainder of this section consists of three parts, where we summarise
the feedback we got from interviewing the domain experts concerning domain
facet definition, component classification and component browsing respectively.

Domain Facet Definition The experts recognized facets as a useful approach
for classifying CIM components in general. However, they see a potential weak-
ness of the approach in the fact that facet developers bear a huge responsibility.
First, these developers restrict facets and facet values that are the base for all
later classifications and browsings. Second, they need to clarify the meaning of
facets and values and should take the component developers’ perspective into
account. These aspects indicate that it is crucial for both, classification and
browsing to have well defined facets available.

Component Classification Faceted classification with its restrictive charac-
ter17 appears to be an adequate method for structuring a component library
for the domain experts. If the facets are well defined they can support even a

17 Restrictive with respect to the controlled vocabulary.

An Integrated Facet-based Library for Arbitrary Software Components 13

Facet Description Examples

CIM-Schema Uses CIM specific terms to
classify the component

CIM-Core, CIM-User
CIM-Interop

Connection Names the main connection
used by the component

Ethernet, Wifi,
Bluetooth

Device Describes which sort of device
is used by the component

Hub, Router, Modem

Element Type Distinguishes between con-
ceptual and real life compo-
nents

Logical, Physical

Protocol Names the main protocol used
by the component

IP, DHCP, IPX, SSH
Telnet

Structure Gives a hint about the com-
ponent’s inner structure

SingleConcept,
MultiConcept

Table 2. Telecommunication specific facets

large number of component developers to classify their work without creating
anomalies such as synonyms, antonyms or plural-forms. In addition to that, the
experts pointed out, that providing domain knowledge as facets and facet values
can simplify work especially in a huge domain such as telecommunication. This
is because component developers and users do not have to remember all domain
concepts on their own.

The automated classification appears to be a very useful approach for prac-
tical use. Rather than classifying huge sets of components by hand, the domain
experts, in the roles of component developers, want to use as much automa-
tion as possible. Therefore, rules must be specified that cover important aspects
of the domain. We identified many opportunities for CIM model components to
specify such rules for automation (e.g., for the facets CIM-Schema or Structure).

Together with the domain experts, we identified one particular application of
automation rules as an interesting alternative to using the specific classification
tool. In the case of CIM components, adding notes to a graphical component dia-
gram was a common method used by the domain experts. These notes contained
information that could be extracted and translated into facet values. This was
seen as a useful feature by the domain experts since it gives them the opportu-
nity to define facet values directly in their models. This supports our argument
that a tight integration of development environment and library system is cru-
cial. All in all, the automated classification support was seen as a critical feature
for broad industrial acceptance of faceted classification by the domain experts.

Component Browsing Faceted browsing was received by the domain experts
as an intuitive and user-friendly method to search in a huge repository of compo-
nents. They acknowledged that step-wise searching in a faceted browser supports

14 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

component users that think in the problem space rather than in the solution
space. As transferring ideas between both worlds is a major challenge in finding
the right component for reuse, presenting facets and values can help. The domain
experts, who used the composition environment for CIM without the facet-based
library beforehand, stressed the importance of integrating the library system into
the composition environment. For them it was very important that a discovered
component was directly reusable from the search result view of the component
browser.

Nevertheless, the experts missed some features while testing the browser.
The browser always constructs a query using logical and concatenation of all
selected facet values. The domain experts encountered cases, where there was a
need to express that a facet value should not be set or where or concatenations
would be desirable. They suggested that the browser could be improved in the
way that the component user selects a facet value that should not be met by
the desired components or other configuration facilities, in order to influence the
construction of the actual queries based on the selected facet values. Ultimately,
the domain experts also suggested that for complex searches a SQL-like query
language over the facet data would be helpful for experienced users. Nevertheless,
the faceted browsing process has shown to be intuitive as it supports the user in
various ways.

The overall results of the evaluation are positive. In particular, the following
points were stressed:

– Faceted classification and browsing are promising methods to structure and
explore libraries of domain-specific model components.

– Automatic rule-based classification appears to be important for usability and
acceptance of the library system.

– The integration of the library system with component development and com-
position environment is important to support the reuse process.

4.2 Evaluation Using Other Model Component Types

The previous section showed the applicability of our approach to one kind of
domain-specific model components. To support our claim that faceted classifica-
tion and browsing can be used for arbitrary types of model components and that
this is supported by our implementation, we tested our approach and implemen-
tation with different models, documents and code defined in different languages.

We experimented with languages and components used in the demonstrator
system we realized in [8]. There, we performed a component-based and model-
driven development of a system using different kind of components including
OpenOffice documents, UML models, models defined in graphical and textual
domain-specific languages and Java source code.

For all these component types, EMF metamodels and Eclipse-integrated tool-
ing exists. As our implementation was created on the same platform we were able
to classify components in their development environment. One interesting point

An Integrated Facet-based Library for Arbitrary Software Components 15

to mention is, that we were able to define facets that were specific to the devel-
opment process but not to a specific modeling or implementation language. For
instance, it was possible to relate each component to one use case in the system.
Thus, we defined a facet UseCase and classification rules that identified which
component was related to which use case. We were then able to use the browser
to identify all components related to a specific use case.

5 Conclusion

This paper presented a new approach to facet-based software reuse libraries
that takes the requirements of model-driven software development practice into
account and reuses well-established browsing techniques from online systems.

We presented an implementation that is integrated into the widely used
Eclipse development and modelling environment. Since a variety of languages
and tooling for Eclipse and the EMF does already exist, many developers can
directly use our implementation in an integrated manner without adaptation
effort. This was also vital to transfer our research results into practice.

Our evaluation with the Telefónica domain experts showed that the approach
is applicable in practice to browse libraries of domain-specific model components.
The results stress the importance of having the library system tightly integrated
into the development and composition environment. This improves the usability,
since the users have all tools needed available in a single environment. In our
case, these tools are Eclipse editors and the Reuseware composition tooling.

The first evaluation and experiments we performed can only indicate the
potential of an integrated, generic facet-based software component library sys-
tem. Thus, in the future, we plan to optimize our implementation with regards to
performance and to conduct further evaluations on larger component collections.

6 Acknowledgments

This research has been co-funded by the European Commission in the 6th Frame-
work Programme project Modelplex contract no. 034081 (cf. www.modelplex.
org) and the European Social Fond / Free State of Saxony, contract no. 80937064.

References

1. Model-driven Development of Complex Software: A Research Roadmap, Washing-
ton, DC, USA, May 2007. IEEE Computer Society.

2. R. B. Allen. Retrieval from facet spaces. ELECTRONIC PUBLISHING-
CHICHESTER-, 8:247–258, 1995.

3. Distributed Management Task Force Inc. (DMTF). Common Information Model
Standards. http://www.dmtf.org/standards/cim/, 2009.

4. Eclipse Foundation. Eclipse platform technical overview, April 2006.
5. A. Evans, M. A. Fernández, and P. Mohagheghi. Experiences of Developing a

Network Modeling Tool Using the Eclipse Environment. In Proc. of ECMDA-
FA’09, volume 5562 of LNCS. Springer, 2009.

16 M. Schmidt, J. Polowinski, J. Johannes, M. A. Fernández

6. M. Hearst. Design recommendations for hierarchical faceted search interfaces. In
ACM SIGIR Workshop on Faceted Search, 2006.

7. F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On Language-
Independent Model Modularisation. In Transactions on Aspect-Oriented Devel-
opment, LNCS. Springer, 2009. To Appear.

8. J. Johannes. Controlling Model-Driven Software Development through Composi-
tion Systems. In Proc. of NW-MODE ’09. Tampereen teknillinen yliopisto, 2009.

9. J. Johannes, S. Zschaler, M. A. Fernández, A. Castillo, D. S. Kolovos, and R. F.
Paige. Abstracting Complex Languages through Transformation and Composition.
In Proc. of MoDELS’09, LNCS. Springer, 2009.

10. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language. In
ECMDA-FA’06, volume 4066 of LNCS. Springer, 2006.

11. A. Mili, R. Mili, and R. T. Mittermeir. A survey of software reuse libraries. Ann.
Softw. Eng., 5:349–414, 1998.

12. MODELPLEX Project. Deliverable D1.1.a (v3): Case Study Scenario Definitions.
http://www.modelplex.org, Mar. 2008.

13. Object Management Group. MOF 2.0 core specification, Jan. 2006. http://www.

omg.org/spec/MOF/2.0.
14. Object Management Group. Object Constraint Language, Version 2.0, May 2006.

http://www.omg.org/spec/OCL/2.0.
15. Object Management Group. SysML 1.0 specification, Sept. 2007. http://www.

omgsysml.org/.
16. J. Polowinski. Widgets for faceted browsing. M.J. Smith and G. Salvendy (Eds.):

Human Interface, 1:601–610, 2009. To appear.
17. J. S. Poulin and K. P. Yglesias. Experiences with a faceted classification scheme

in a large reusable software library (rsl). In Seventeenth Annual International
Computer Software and Applications Conference, pages 3–5. IEEE, 1993.

18. R. Prieto-Dı́az. Implementing faceted classification for software reuse. Communi-
cations of the ACM, 34(5):88–97, 1991.

19. R. Prieto-Dı́az and P. Freeman. Classifying software for reusability. In IEEE
Software, volume 4, pages 6–16. IEEE Computer Society, Jan 1987.

20. R. Prieto-Daz. A faceted approach to building ontologies. In Proc. IEEE Interna-
tional Conference on Information Reuse and Integration IRI 2003, pages 458–465,
2003.

21. U. Priss. Faceted knowledge representation. Electronic Transactions on Artificial
Intelligence, 4:21–33, 2000.

22. C. G. Rao and P. Niranjan. An integrated classification scheme for efficient retrieval
of components. Journal of Computer Science, 4(10):821–825, 2008.

23. G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search: Theory,
Practice, and Experience, volume 25 of The Information Retrieval Series. Springer,
Aug 2009.

24. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. Eclipse Modeling Frame-
work, 2nd Edition. Pearson Education, 2008.

	Text1: This is the author's version. The final publication is available at: http://link.springer.com/chapter/10.1007/978-3-642-13595-8_21

