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Abstract
While semantic web data is machine understandable and well suited for advanced fil-
tering, in its raw representation it is not conveniently understandable to humans. There-
fore, visualization is needed. A core challenge when visualizing the structured but het-
erogeneous data, turned out to be a flexible mapping to Visual Variables. This work
deals with a highly flexible, semi-automatic solution with a maximum support of the
visualization process, reducing the mapping possibilities to a useful subset. The basis
for this is knowledge, concerning metrics and structure of the data on the one hand and
available visualization structures, platforms and common graphical facts on the other
hand — provided by a novel basic visualization ontology. A declarative, platform-in-
dependent mapping vocabulary and a framework was developed, utilizing current stan-
dards from the semantic web and the Model-Driven Architecture (MDA).
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Chapter 1. Introduction
Besides the information that is stored as texts on websites that can only be retrieved by
string comparison through search engines, there is an increasing amount of structured
data in the world wide web. By the use of standardized description languages as the
Resource Description Framework [RDF] and the Web Ontology Language [OWL] this
data can be connected as part of the semantic web [BHL01] to enable new services.

This work proposes a possibility of quickly generating visualizations for arbitrary struc-
tured data that has been transformed to RDF, including data sources not known as
yet. Fields for visualization are: Semantic web data, product data in web shops and
auctions , Wikipedia data (especially from a semantic version), tagged data ([FlickR],
[Del.icio.us], etc.), Personal Information Management (PIM) data about e-mails, ap-
pointments, documents, bookmarks and contacts, [Gnowsis].

Besides the life sciences, which were pioneers in the creation of semantic web content
[Sam07], there are two fields that have the potential to offer large sets of semantic
web data: Semantic wikis and shopping systems, which will be further discussed in the
following two sections.

Semantic wikis try to benefit from the simple way of authoring wikis and use the wiki
principle to offer an easy way to collect structured data. The authoring of RDF data
could not, until now, be easily done by domain experts, but only by knowledge repre-
sentation experts. The use of semantic wikis could change that, and therefore the data
collected by them could become a major source of semantic web data.

The Semantic MediaWiki software [Semantic MediaWiki] is an extension to the Media
Wiki [MediaWiki], used for the Wikipedia for example. It employs categories and typed
links pointing to other instances or to attributes for simple datatypes, each defined by
an article of its own. The agreement on the precise meaning of a relation or category
can be achieved via the community process, since each reference and class has its page.
The Semantic Media Wiki software offers the possibility of exporting its data as RDF
which can be used as input to SemVis. This is demonstrated by some of the example
data, which has been gathered from the wiki of Ontoworld1 , a wiki for the semantic
web community.

Other semantic wikis exist, such as SemperWiki2. Many more have been developed
in the context of Personal Information Management. For example, Gnowsis, a Seman-
tic Desktop Environment published by the Knowledge Management Lab of the DFKI
(Deutsche Forschungszentrum für Künstliche Intelligenz ) integrates a Semantic Wiki,
[Gnowsis].

Ebay, Amazon and especially Google Base administrate huge amounts of structured
product data, that becomes more and more interconnected and fine grained. E.g. rela-
tionships like Similar Products are established and detailed product attributes like Size,
Resolution, Energy Consumption for a display device, or Size, Color, Material, Sex for
a textile are stored. Every product needs different attributes, only some of them can
be shared by generalized products. This allows for very convenient product search by
limiting each characteristic to a certain desired value or value range and for convenient
comparison of products, but results in very heterogeneous data. Data, as the semantic
web technologies can handle it however.

1http://wiki.ontoworld.org/wiki
2http://www.semperwiki.org
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It is a characteristic of semantic web data, that it does not inherit any representation.
Data and representation are intentionally cleanly separated and hence semantic web
data always needs to be transformed and visualized, to be shown to humans. Because
of the variety of possible domains it is worthwhile offering a generic framework for
visualization.

This work is based on the experiences made with a former work on the topic Visual-
ization of Large Data Sets In 3D-Space [Pol06]. This former work had some problems
which we want to list here, in order to explain our motivation for building a new system.

So far the mapping behavior in the framework was hard coded into the source code. This
tight mapping of data to Visual Variables and models is clearly undesirable and had to
be resolved. Equally the selection of data to be displayed was hard coded and the data
(i.e. RDF data and ontologies) was accessed directly via the API of an RDF repository3

instead of using a query language. Furthermore the old framework was limited to a
specific platform, [Java3D], as the only possible output platform. A fourth major issue
was the lack of any support for the definition of filtering and mapping by the system.

The new system, described in this work, is referenced to as SemVis as a working title.
SemVis tries to accomplish three main goals in order to overcome the problems of the
old framework. These goals are an exchangeable and reusable definition of presentation
knowledge, a maximum of variability by variable platforms for the presentation and a
semi-automatism of the visualization with as much support for the user as possible.

The exchangeable, loosely coupled definition of the visualization is achieved by the
use of declarative display and mapping languages. The definition of this presentation
knowledge may, to some great extend, be reused in other visualization systems, since
standards are used wherever possible. Equally, the data repository can more easily be
exchanged, because the selection of data is done using the query language [SPARQL].

While the old framework was limited to the Java3D platform, the Model-Driven Archi-
tecture [MDA] allows for a description of the presentation knowledge independently of
the final visualization platform. From this description, it can generate code for several
output formats including XHTML, X3D and SVG. The user can choose from a variety
of platforms that are described to SemVis.

SemVis does not try to offer a fully automatic visualization of arbitrary data in a do-
main-independent way. In case of a fully automatic approach, as necessary for browsers
for unknown data, the visualization has to be reduced to a least common denomina-
tor, which offers little value. Based on the idea that only the user4 knows the presen-
tation goals, the new framework introduces a semi-automatic approach. This requires
adding presentation knowledge, but results in specialized, custom-tailored visualiza-
tions. SemVis tries to support the user as much as possible with a pre-reduced set of
possibilities and suggests default values based on metrics and general graphical knowl-
edge. To enable this kind of interaction with the user, the system requires a graphical
interface.

This work is structured as follows: Chapter 2 offers a general overview of visualization
of semantic web data to be able to categorize SemVis and compare it to existing work
from the field of graph visualization and semantic web browsers. Chapter 3 defines
requirements for a flexible visualization system to give an overview of the activities
of the different actors in SemVis, without going into detail. The following three chap-
ters introduce necessary vocabularies for these processes. After Fresnel as a standard

3The system currently uses Open RDFs Sesame as an RDF repository [SESAME].
4The term user is used in a general way. The different actors involved are described in detail in Section 3.1.
Here the admin of a system is meant, who is familiar with the domain.
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display vocabulary for RDF is introduced, the newly created Graphics.owl ontology
(Chapter 5) and the Mapping.owl vocabulary (Chapter 6) are explained. Chapter 7 is
about the system architecture of SemVis, putting it into the context of the Model-Driv-
en Architecture and explaining the transformation steps and required knowledge of the
system. Chapter 8 shortly describes a selection of possible output formats for SemVis.
Finally Chapter 9 summarizes the improvements as well as the remaining limitations
and resulting next steps that have to be taken.
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Chapter 2. Visualization of
Structured Data in General
This chapter is about the general challenges when visualizing structured data. To be
able to categorize SemVis into existing solutions for the visualization of structured data,
characteristics of visualization systems are introduced in Section 2.1 and the overall
visualization process is subdivided into subsequent steps in Section 2.2. Afterwards
existing techniques for the visualization of the filtering process by the user (Section 2.3)
and for the visualization of the resulting filtered data (Section 2.4) are presented and
compared using the terms we introduced before. Section 2.5 finally puts SemVis into
the existing categories and compares it to other solutions.

2.1. Global and Local Interfaces
According to [Rut05], the visualizations of structured data, especially RDF data, can
be subdivided into those with global interfaces, those with local interfaces and those
which integrate both into one solution.

Global interfaces focus on the overview and the structure of the data. The graph visu-
alization presented in Section 2.4.1 are a good example for this.

Local interfaces concentrate on details of a particular object. The objects of interest
are linked to each other from instance to instance. This way the RDF data becomes
browseable. The popular OWL editor [PROTÉGÉ] is a characteristic example of this
category.

A third group of visualizations provides integrated interfaces, which seamlessly con-
nect the overview with the instance view by marking the current location in the global
interface and offering orientation in the semantic space.

2.2. Steps of the Visualization Process
Based on the work of [Rut05] we consider the visualization process of semantic web
data is three fold, consisting of selection, structuring and a formatting step. The SemVis
mapping vocabulary contributes to the formatting part, however techniques concerning
selection, such as faceted browsing and structuring techniques such as a mechanism to
pick a specific view on the RDF data are used by the framework as well. Each of these
steps is described in the following subsections.

2.2.1. Searching and Filtering (Selection)
Searching and filtering in the field of computing can be seen as the act of narrowing
down an initial set of items. Restricting the values for facets of the data then leads to
a selection of instances.

Visual possibilities for the selection process are described in Section 2.3 in detail.

Figure 2.1. Selection Step (Graph to Subgraph)
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2.2.. Picking a View Point (Structuring)
The structured data, when available as RDF, represents a directed graph that must not
even be acyclic or connected and can be seen from a variety of view points. As an
example consider a knowledge base containing events and persons that are involved in
those events. One view could take the persons primarily and show the related events
for each of the persons. Another view could put the events in the center of interest and
subordinate the persons involved.

What is an advantage when searching and filtering turns out to be unuseful when dis-
playing the data in a common way. Representations of knowledge like texts and dia-
grams need data that has hierarchy and sequence (i.e. an ordered tree), because this is
the way we are used to structure our information from text books, [Rut05]. So the next
step, when visualizing RDF data, is to structure the selected data. This can be reduced
to the problem of extracting an ordered tree.

Figure 2.2. Structuring Step (Graph to Ordered Tree)

While most commonly represented as XML documents, RDF data can be represented in
diverse notations such as [N3]. But even the RDF/XML serialization, which definitely
is a tree by the nature of XML, can not be used for visualization purposes, since this
serialization is arbitrary. It can have many shapes while still saying nothing about the
way the information is intended to be presented [Wal03]. What needs to be done, is to
add presentation knowledge to pick one of the view points on the data and extract a
meaningful tree, representing this view point.

Many solutions have been developed to structure RDF data. Due to the lack of a RDF/
XML canonicalization, described above, it is not possible to process RDF/XML with
plain XSLT1. Xenon and RDF Twig overcame this problem with extensions to XSLT.
However, these were procedural approaches, which were limited to a specific output
format and did not support a standard query language such as SPARQL.

Declarative approaches for the description of display information have also been devel-
oped. However, they still suffered from being display paradigm specific, for example
the Graph Style Sheets (GSS) used in the IsaViz Browser [IsaViz] and the Haystack
Slide ontology, [QHK03], [BLP05].

The solution that is chosen in SemVis for the purpose of structuring is the Fresnel
RDF display vocabulary2, which is a fully declarative, domain- and paradigm-agnostic
approach (detailed description in Chapter 4). Fresnel goes further than the structuring
part and can also be used to define the formatting part, which will be described in the
next section.

1XSLT — XSL Transformations: A language for transformations between XML documents (http://
www.w3.org/TR/xslt20/ )
2More precisely the Fresnel Lens Vocabulary is responsible for the description of the structuring process.
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2.2.3. Defining Visual Appearance (Formatting)
The formatting process can be subdivided into a styling part and a mapping part. The
styling part, the decoration of elements, is done with the Fresnel Format Vocabulary,
which is described in detail in Chapter 4. The mapping part, the assignment of facets
to Visual Variables, is described in detail in Chapter 6.

Figure 2.3. Formatting Step (Visual Information Added)

2.3. Existing Visual Selection Mechanisms
Visualization aspects primarily apply to the presentation of the selected data, but already
the selection of the data and the configuration of the visualization itself can be done in
a visual way, supported by the system. The visualization of the dynamic, incremental
selection mechanism is not the main concern of this work. Hence, it shall only briefly
be mentioned which user interfaces for this visual filtering exist.

When a user wants to filter the data he could use a query language to do so. SPARQL
is such a language, that offers a convenient means to formulate queries over RDF da-
ta. However, there remain two problematic issues with formulating SPARQL queries.
First, the user has to know the vocabulary of the query language, what can be tolerated,
secondly, to make restrictions on values, the user has to know at least part of the data
she wants to query in advance, which is usually not the case. Therefore the user has to
be guided by the system somehow when filtering the data.

There are two approaches to achieve that, which are described below: The visual con-
struction of queries (Section 2.3.1) and the Faceted3 Browsing paradigm (Section 2.3.2).
They both have in common that neither the vocabulary nor the data needs to be known
and syntax errors are impossible through the user interface. Common to both approach-
es is the fact that they incrementally refine the set of selected instances, always offering
the possibility to broaden the selection again by clearing restrictions. The use of a GUI
has the additional advantage of being able to preset probable, frequently used values,
though this is not used by any of the studied mechanisms so far.

The last section (Section 2.3.3) proposes user interface widgets for different selection
tasks, depending on the type of a facet.

2.3.1. Visual Query Construction
Instead of writing in a query language, the formulation of a query string can be visually
constructed with the help of systems, using a Visual Query Languages (VQL) such as
GLOO, the Graphical Query Language for OWL Ontologies [FH06] or the visual query
system developed in the context of SEWASIE4 [CM03]. Similar efforts have been made

4SEmantic Webs and AgentS in Integrated Economies
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in the field of databases, eliminating the need for an domain expert to learn a language
such as SQL before being able to search a database. The domain independence of the
RDF query language is retained by the visual language.

GLOO maps to nRQL5 and represents classes, individuals and also operators such as
NOT, OR and AND as geometrical objects. These objects can be connected by named
arrows, representing properties, to form a tree as a visual representation of the query.
The operators allow for building complex queries by combining simple ones. Besides
the advantages that count for both query construction systems, GLOO offers informa-
tion on result cardinalities to give feedback to the user. Figure 2.4 shows a simple ex-
ample for a graph representing a query in GLOO.

Figure 2.4. Graph Display of a Query in GLOO

The SEWASIE visual query system uses an iterative refinement process and propos-
es the technique of intensional navigation to build conjunctive queries. By this it is
very close to the Faceted Browsers that will be described in the following section. In
addition to the graphical display of the query as a tree structure, the query is steadily
output in natural language, where the tree structure corresponds to nested sentences.
This way the user can check the semantical correctness of her selections and navigate
to a subquery by clicking on a part of the generated sentence. It should be noted that
only the generation of natural language is supported (and necessary), not the parsing.
The system employs additional ontologies to enrich the searched data, e.g. by providing
extra labels for associations.

2.3.2. Faceted Browsing
Faceted Browsing performs the incremental refinement of a set of results by restricting
values of the data's facets. In contrast to visual queries languages, the faceted browsing
does not return the constructed query explicitly, but, after each refinement, directly
presents the user the reduced set of results and the possibilities to further choose from.

A characteristic, common to most Facet Browsers is the fact that the possibilities the
user has to choose from are restricted to the possibilities which do not lead to an empty
result set. This way it is guaranteed, that a search always returns at least one instance.
Likewise the cardinality of the results from a potential restriction is mostly displayed
for each facet value as a preview.

Some Facet Browsers perform an automatic facet ranking to allow the user to make re-
strictions in an appropriate order. This automatic facet ranking can be based on metrics
as discussed by [ODD06]. Oren et.al. distinguish between Descriptors, the facets that
are well suitable for describing an item, and Navigators which are suitable for navigat-
ing through the data. The quality of a facet as a Navigator can be calculated by three

5A query language offered by the OWL-DL reasoner Racer



Visualization of Structured Data in General

8

measurable properties: Predicate Balance, Object Cardinality and Predicate Frequen-
cy.

Since Faceted Browsers are a visualization of the selection mechanism as well as a
means to visualize the data itself, examples for several Faceted Browsers are described
in the data representation section (c.f. Section 2.4.2).

Starting Points (Primaries)
The definition of starting points is essential for the user to explore the data with a
Faceted Browser. In contrast to an explicit query, an explorative interaction needs such
a base to further specialize.

Classes that are used as starting points are referred to as Primaries in this work to be
consistent with existing vocabulary (see also Section 4.4). They were called Entities in
former work [Pol06] and are also referred to as Focal Points in [Rut05].

The choice of starting points is highly dependant on the domain and the intended pur-
pose of the browsing. Good Primaries in the domain of history data are, for instance,
the classes Event, Person, Century, Location or Field of Interest. Bad Primaries for
the field of history, because they are only of peripheral interest or too specialized, are
classes such as Continent, Invention, Art Style, Weapon, etc. However, these classes
might be useful as Primaries in another context.

2.3.3. Selection Widgets
While filtering, suitable widgets to choose the facet values have to be offered. We pro-
pose a selection of these widgets based on the characteristics of the facet to be filtered.
Most of the current Faceted Browsers, introduced later on, use the same widgets for all
facet types, for example, and not much attention has been paid to the fact that the facets
inherit a structure, which can be helpfully reflected by the widget.

Entering Facet Values
A first distinction of selection widgets can be made according to their possibilities for
entering the desired facet values. This section lists criteria concerning the quality of
widgets for entering the desired facet values. In the next section criteria concerning the
display of facet characteristics are given.

Range Selection

Choosing a single value is often undesirable. The user often rather wants to define a
vague range of values as it is usually the case with facets such as time and price. Special
widgets, defining a minimum and a maximum value can be used in this case.

Sliders with two markers or two separate text input fields are possible means to define
ranges. Also option lists can show the selection of a range by marking all values within
a maximum and a minimum value.
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Slider Widget for the Facet
price (Range Selectable)

Option List Widget
for the Facet name
(Range Selectable)

Option List for the Facet im-
portance (Range Selected)

Table 2.1. Possibilities of Selecting a Value Range

Multiple Selection

An alternative to this, is the possibility of selecting multiple discrete values of a facet.
However, this has its limitations for facets with a large number of values and is not
possible at all for continuous values. Multiple selection is possible, for example, in
option lists, lists of checkboxes and could also be implemented for tree maps.

Figure 2.5. Option List for the Facet fieldOfInterest (Multiple Values Selected)

Selection of Continuous Values

A further criterion is the ability to define continuous values. This can be performed by
a text input field, selection wheels or by sliders (c.f. Figure 2.6).

Figure 2.6. Slider Widget for the Facet size

Free Input

A last distinctive feature is the free input of values (c.f Figure 2.7) in contrast to the
selection of predefined values. The free text input of ObjectProperty values (by the
identifier) requires recall, therefore free text input is better suited to the selection of
numeral values.
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Figure 2.7. Text Input Widget for the Facet price (Range Selectable)

Reflecting the Facets Characteristics
The following criteria concern the widgets ability to reflect the characteristics of the
facet, in especially the relationship between the facet values.

In the field of statistics, values are categorized into nominal, ordinal and quantitative
data representing different scales of information on the relationship between the facet
values. Depending on the category to which the facet values belong to, different widgets
are appropriate to reflect this information.

Nominal Data

If there is no relationship between the facet values, except for the fact that they are all
different and can be distinguished by their name, the data is (only) nominal. A trivial
sorting however, can be performed using the alphanumerical order of the values titles.
An example for selection widgets for nominal data is given in Figure 2.5. An option list,
however, already suggests the existence of an order, even if there is none. An appro-
priate widget for a set of values without any order should actually look like Figure 2.8,
stressing the unrelatedness of the values. But normally it does not matter if the values
are ordered anyway. Often the alphanumerical sorting can be chosen to give meaning
to the order.

Figure 2.8. Theoretical Set Widget for Purely Nominal Data

Ordinal Data

If there is an order relation between the values, the data can be referred to as ordinal. The
relationship between the facet values that is reflected by the widget, does not necessarily
have to be the facet property itself. It might also be another relation that fulfils the
condition of not leaving the facets range. Consequently the range and the domain of
the relation have to be the same and have to equal the facets range (c.f. Figure 2.9).
The special case of a widget that is structured by the facet itself is shown in Table 2.2
(left side).
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Figure 2.9. Tree Widget for the Facet loves (Sorted by the Property hates)

The topology build by the order relation might be a sequence, a tree or a DAG. An ex-
ample for a facet that has a tree structure is the facet takesPlaceIn (domain Event). It has
the class GeographicalRegion as a range. For the moment, assume that Geographical-
Regions are related to each other via an exclusive partOf relationship6 . Facets that have
a hierarchical topology can be well displayed by the classical directory tree (already
seen in Figure 2.9) or by a tree map widget [JS91], [SCM+06] as shown in Table 2.2
(right side). It can further be distinguished, if the selection can be performed with one
click, because the whole hierarchy is explicitly shown in an expanded state, or the se-
lection can be performed by an incremental refinement, level by level.

Tree Widget for the Geo-
graphical Facet locatedIn

Tree Map Widget for the Ge-
ographical Facet locatedIn

Table 2.2. Possibilities of Selecting a Value Range

Other hierarchical facets include isA or partOf relationships, i.e. component relation-
ships of composed products and body parts.

An example for a facet that is structured by a strict order connecting its discrete values is
the facet hasImportance. An appropriate widget could be a simple option list as shown
in Figure 2.10.

6This is a simplification. The relation between geographical regions is actually not an exclusive partOf rela-
tionship, but there are countries being part of more than one region. This results in a DAG, that can however
be transformed into a tree by the duplication of child elements (also c.f. Figure 2.9.
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Figure 2.10. Option List for the Facet importance (Single Value Selected)

Quantitative Data

Quantitative data provides information on the ratio of values or at least on the ratio of
differences between pairs of values (depending on the fact if the Null was chosen in a
meaningful way, or not). This quantitative information can be reflected by the visual
variable Area for example.

A Tree Map is able to provide quantitative information by the proportions of areas and
also a Pie Chart could be used as a widget. The Option List Widget can also be extended
to represent quantitative information by using different sizes for each value to reflect
the ratio to other values (c.f. Figure 2.11).

Quantitative data always provides sequence, yet the values are not discrete, but contin-
uous. So it is always possible to handle only the ordinal data aspect. All numeral simple
data types such as xsd:float and xsd:integer offer quantitative data.

Figure 2.11. Option List for the Facet importance (Quantitative Information)

2.4. Existing Visualizations of Structured Data
The following two sections describe existing visualization techniques subdivided into
the fields Graph Visualization and Faceted Browsing, always considering the principles
mentioned before.



Visualization of Structured Data in General

13

Figure 2.12. GraphViz Graph Visualization (Module Dependencies)

2.4.1. Graph Visualizations
According to the work of Schraefel and Karger [SK06] many good graph visualization
algorithms exist for the display of structured (RDF) data. However, the focus is often
on visualizing the structure of the data rather than the information itself. Graph visual-
izations usually provide exclusive global interfaces which offer a convenient way to
grab the overall structure. But the usefulness of working with the visualized data is
limited. The explicit presentation of the structure is often more relevant for authors (for
example of an ontology) than for the users of the structured data who have to perform
tasks like edit, compare or find data. Additionally, as they work fully automatically,
graph visualizations often have to agree on the least common denominator.

The strengths of graph visualizations are the visual identification of structural aspects,
like clusters, high and low interconnectedness in certain areas and an overview of the
overall topological complexity, as is the case in the following two examples: Figure 2.12
shows a graph of module dependencies7 and the graph shown in Figure 2.13 visualizes
a network8. When graph visualizations are required to offer overview and information
on a single relationship at the same time, the detail-and-context-problem arises. The
most promising approach to challenge this problem are the Fisheye graph visualizations.
However, the focus of this work is mainly on non-graph-visualizations. Therefore, in
the following two subsections, only two graph visualizations of particular interest are
introduced, because they differ from most of the other approaches due to the fact that
they have both, a local and a global interface. Please refer to [HMS00] for a detailed
discussion of graph visualizations.

7Image taken from the website http://www.graphviz.org
8Image taken from the website http://www.caida.org/tools/visualization/walrus/
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Figure 2.13. Walrus Graph Visualization (Networking)

IsaViz
IsaViz is an RDF graph browsing and editing tool, [IsaViz]. It has its focus on providing
a global interface, but instances can also be displayed in detail and it is possible to
zoom the displayed graph. The user can modify the appearance of relations and nodes
in a declarative way, using either GSS, its own Graph Style Sheet language or Fresnel
as a more general approach, which will be described in Chapter 4. The styling allows
for aggregation of multiple properties and their values to larger visual units instead of
drawing a single connection line to each of the values. The combination of the explicit
visualization of structure with the presentation of the values themselves leads to a less
crowded display, while preserving the complete information content. Figure 2.14 shows
a screenshot of the tool.
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Figure 2.14. IsaViz — FOAF9 data

Relation Browser
A small but interesting visualization of RDF data is the Relation Browser by Moritz
Stefaner, [Relation Browser]. A screenshot is presented as Figure 2.15. It is not a Facet
Browser because its intention is not the refinement of a set of results by restricting
values, but the exploration of the relations between things. Accordingly, navigation is
based on the relationships between the instances. Clicking on an associated object re-
sults in centering the selected object and radially rearranging associated objects (click-
and-center). It shows always only parts of the RDF graph as a radial tree with a depth
of one. Relations to other instances are displayed regardless of their type. The brows-
er focuses completely on instance relationships and shows no classes. Additionally to
the global interface, a local interface is supported by the ability of clicking one of the
circles. This leads to a continuous magnification of the circle, which then serves as a
frame for detailed information on the selected item, this way integrating the global and
local interface.

The Relation Browser can only be used for an arbitrary domain, after being configured
for this domain. This configuration also allows definition of domain specific simple
icons and colors to distinguish types of objects and relations. The browser is imple-
mented in Flash.

9Friend Of A Friend: RDF Vocabulary for the description of people and their relationships
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Figure 2.15. Relation Browser — Geographical Data

2.4.2. Faceted Browsers
By the atomic segmentation of a domain, there is the possibility to offer views exact-
ly personalized to the user. Faceted Browsers such as Longwell, mSpace or FLAMEN-
CO are the first affords to use these advantages. They use the Faceted Browsing UI
paradigm (c.f. Section 2.3.2) that allows the user to select the results for presentation
according to their facets. Finally, the section called “Multiple Categorization in Web-
shops” investigates the employment of faceted browsing in the field of web shopping
applications.

All browsers have in common that they offer a global interface and mostly also integrate
a local interface (if not expressly stated different). An initial set of results can be refined
by restricting these facets to certain values. All browsers additionally integrate a string
search as one of the restrictions.

However, mostly no special widgets are displayed for different facets, nor is the facet
structure made explicit. None of the browsers can restrict arbitrary facets to a value
range, e.g. the restriction of the facet age from 10 to 12 years. This would be a useful
for the flexible selection of simple data types. Mostly, even multiple selection of facet
values at the same time is not possible (e.g. 10, 11, 12 years). With one exception, the
facet values are not explained to the user via the user interface and mostly it is not
possible to customize the UI by adding facets to the set of restrictable facets or removing
them from there.

Often the sorting of results by arbitrary facets is not possible, but only for fixed prop-
erties like Price or Relevance. If it is possible, the facet set for filtering can always be
different from the facet set for sorting.
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Furthermore, all browsers have in common that they use a two dimensional display
paradigm, mostly lists. The implementation is done as a webapplication rendering
XHTML and JavaScript in all cases where not stated explicitly in the description of the
browser. Most of the browsers are not domain-independent, but have to be configured
for a particular domain.

The following sections describe some Faceted Browsers, focusing on their special fea-
tures.

FLAMENCO
FLAMENCO (FLexible information Access using MEtadata in Novel COmbinations)
was developed at the University of California, Berkeley [FLAMENCO]. It uses meta
data to guide the user through a field of information.

The starting screen shows a list of facets with their values to restrict the result set. As
soon as the first selection has been done, all results are displayed in tabular style, as
shown in Figure 2.16. The left section allows further restrictions and the upper part
allows the removal of constraints. The text input field in the top left corner can be used
to search by keywords. The strings are equally handled as facet constraints and result in
an entry in the list of applied restrictions at the top of the screen. The facet values, which
are limited to those, leading to a non empty result set, are assigned the number of results
after a further restriction in brackets. FLAMENCO shows the structure of hierarchical
facets like isA or partOf by displaying at first only the most general values and showing
children after selecting the parent. A list of children (which are called subcategories
irrespectively of the facet) is displayed as a preview, when hovering the mouse over the
facet value before actually choosing it. The browser allows sorting and grouping the
results by a configurable set of facets. Starting from a given resource that is displayed
in detail, it is possible to search for similar items on the basis of its facets values.

Figure 2.16. FLAMENCO - Data on Nobel Prize Winners
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Longwell
Longwell is a Faceted Browser inspired by FLAMENCO and developed as part of
[SIMILE], which is a joint project conducted by the MIT Libraries and MIT CSAIL
that bundles many semantic web projects.

Longwell is intended to present and browse RDF data. As a definition language for the
presentation knowledge, [FRESNEL] is used and extended which is dealt with in detail
in Chapter 4.

The start screen of Longwell (c.f. Figure 2.17) shows a list of classes which have been
defined as Primaries. The selection of one of these classes restricts the type of the re-
sults to the accordant Primary. This start screen is a kind of a selection by a standard
classification before leaving the user to free faceted browsing.

Figure 2.17. Longwell — Primary Selection View

On the browsing view of the Longwell user interface, shown in Figure 2.18, the right
column is used to represent the facets with their values, which can be used to form
restrictions. A click on a certain value restricts the facet to exactly this value. However,
it is possible to add more values with the help of a link right behind the summary in the
upper part of the screen. Here it is also possible to completely remove a restriction.

As in FLAMENCO, it is possible to sort and group results by sets of facets, which can
be configured independently of the facets that are displayed for filtering.

Longwell is a fully domain independent browser for arbitrary RDF data, since it can be
used without being configured for a particular domain. However, it can be customized
for special display purposes and domains on several levels and offers mashing functions
to connect the data to the SIMILE Timeline (c.f. Table 2.3) and GoogleMaps10.

10A geographic mapping service provided by Google: http://maps.google.de
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Figure 2.18. Longwell — Browsing View

Table 2.3. Longwell — SIMILE-Timeline View

mSpace
mSpace was developed at the School of Electronics and Computer Science at the Uni-
versity of Southampton. It differs from both Facet Browsers described before, in so far,
that it does not constantly present the search results, but rather the facet values them-
selves are items of interest. So it is the only Facet Browser that explains the facet values.

Figure 2.19 shows the user interface of mSpace. The content window on the lower
part of the screen constantly offers information on the currently selected facet value.
A special role in mSpace plays the order of the facets shown on the upper part of the
screen. A facet box on the left side always restricts the available facet values of the
boxes on the right. This way, the order of the facets reflects the chronological order
in which the restrictions were applied. Although this forced order leads to a hierarchy
that users are used to from documents providing some benefit, mSpace could work in a
more flexible way without this order. E.g. a drawback of this approach is the fact that
clearing a restriction abandons all other restrictions that were subsequently made. A
free clearing and setting of restrictions is not possible. The restriction can be broadened
by selecting multiple facet values.
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The user can customize the interface by adding new facet boxes from the repository at
the top of the screen or removing them again.

Facet values are limited to discrete values (it is not possible to select a value range) and
generally displayed as flat facets without revealing the facets structure. An exception
is the display of one facet by multiple columns as it can be seen in Figure 2.20. Here
the facet Genre is split into Super Genre and Genre to display the structure of this facet
explicitly at least to a depth of two.

Figure 2.19. mSpace

Figure 2.20. mSpace (Multiple Columns per Facet)

FacetMap
FacetMap [SCM+06] aims at providing a fully domain-agnostic search interface for
personal documents.

The approach was developed as an alternative to the text list paradigm of most search
interfaces and since that, aims at a fully graphical interface that integrates the represen-
tation of facets and facet values with the representation of the search results. Whenever
possible, graphical icons of the data are used as previews instead of text. But although
FacetMap includes the results in the display, it offers exclusively a global interface,
since it does not provide a detailed view on single instances.

Figure 2.21 shows a screenshot of the application. The screen is split into two parts
after the first narrowing of the data set. The left part shows the still unrestricted facets,
the other displays facets that have already been restricted to some value. The facets on
the left show only the values that are still applicable.
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A variant of the treemap algorithm is used to fill the available screen space with round-
ed rectangles and ellipses to display facets, facet values and results. To calculate the
appropriate amount of screen space that a facet may allocate, facets are ranked based
on their metrics and their relatedness to the already restricted facets. The problem of
guaranteeing a minimum size of display items, while still showing all possible facet
values at the same time, is tackled by the use of an Overflow Bucket that serves as a
place for the rest of values that can not be displayed by at least one ellipse.

The way that FacetMap nests ellipses and rectangles is able to represent the structure
of a single facet explicitly.

Figure 2.21. FacetMap

Multiple Categorization in Webshops
Recently, companies such as Ebay11, Amazon12 and especially Google Base13 exercise
the option of multiple categorization to simply categorize their products and allow for
faceted search in their product data.

All three use a combination of a normal classification system with a faceted system in
order to reduce the amount of very general queries and to inspire the user by offering a
starting point for search. Besides that, the string search by keywords is possible as with
all Faceted Browsers. After roughly choosing a product in a standard hierarchy, or per-
forming an initial string search, the client can concretize his search by selecting several
facet values. Another commonality of all faceted browsing solutions in webshopping
is the ability to search for similar items starting from the detailed view of a product.

Ebay offers a fix set of all facets for a category with all possible values. After choosing a
certain value for a facet, the set of facets is not reduced to the ones that still offer results,
because all restrictions are evaluated altogether only after the submit button is pressed.
Although this offers a more consistent overview of all restriction possibilities, it has
the drawback of possibly returning a zero result set. Already in this standard search,
Ebay offers possibilities for the user to basically customize the browsing interface by

11http://www.ebay.com
12http://www.amazon.com
13http://base.google.com/
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removing or adding facets. However it is not possible to define a value range, except for
fixed ranges of prices. Three different widgets are used: Text input fields, checkboxes
and option lists.

A fully faceted alternative user interface for Ebay has been developed under the name
Ebay Express14. The user can choose from about 20 main categories or choose a cate-
gory containing products matched by an initial string search. Within the subcategories
that are displayed, multiple facets with some values and value ranges are proposed for a
restriction of the results. The facets are ranked by relevance and the values are assigned
a cardinality of the result after a potential restriction. More facets, called options can be
added and also multiple selection of facet values is allowed. Again, only some impor-
tant facets, as the price, have special widgets to allow for manual input of a range for
example. Also the sorting of the results is still limited to a fixed set of facets like price
or relevance, as in the standard Ebay solution.

The results can be displayed as a list or as a table (c.f Figure 2.22).

Figure 2.22. Ebay Express — Search for a Hammock

The interface of Amazon is basically oriented at a standard classification system. Fig-
ure 2.23 shows the selection of books for children at the age of at least 10 years. A mixed
hierarchy is used to display the choices of the user, containing values from multiple
facets and the facet names themselves: After choosing the category Books for children
(belonging to the facet Genre) and subsequently deciding to further restrict the results
by the facet Age, the user has chosen the facet value starting from 10. All this is joined
to one tree which also serves to make the structure of the facets explicit. Result cardi-
nalities are displayed in brackets after each facet value that is not used for restriction so
far. However, some facets can be restricted independently from the others; Again the
facet price is handled exceptionally, but also facets like Brand are treated separately,
depending on the field of products.
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Figure 2.23. Amazon — Books for Children over 10

A first analysis of Google Base [Google Base] as a faceted system has been done by
[Sin05], though the results are only informally published and some things have been
changed at Google Base in the meantime. This work served as a base for our review
of Google Base.

Google Base collects data, including product data, and makes it searchable by faceted
browsing . It allows for complex filtering of the results of an initial string search or
the selection of a main category. No subcategories are displayed, yet there are more
than the twelve Popular Classes and additional Interesting Items Types that are initially
shown, because the author can flexibly define his own categories.

As soon as a category is displayed, the system proposes suitable facets for restriction
and for sorting. Already made restrictions can be cleared by setting the value back to
any. Google Base allows for sorting the results by several, yet selected facets. Complex
specialized widgets are used to allow the combined input of fixed, predefined and us-
er-defined value ranges or enable multiple selection, for example.

Depending on the category, a domain specific view is offered, e.g. the category houses
starts with a view that integrates Google Maps. The faceted system allows for easy build
of mashup applications like this (c.f. Figure 2.24).
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Figure 2.24. Google Base — Search for Cars

Mambo
Mambo (Mobile Aspect-based Media BrOwser) is a browser developed at the Dresden
University of Technology, [Mambo].

The interface is designed to browse large media collections, with special focus on the
usability on mobile devices. Since that, the integration of context and detail is stressed
and implemented by a novel zooming widget called AspectZoom (a generalization of the
TimeZoom widget [DW06]). So far the interface completely renounces the use of string
input and relies on the zooming metaphor to establish "a consistent way of searching,
browsing and filtering data".

Although it has many commonalities with Faceted Browsers, it is called an Aspect
Browser and actually is not a Facet Browser in the sense of the Faceted Browsing
paradigm. Facets play an important role in Mambo, but the interface is centered around
one selected facet that is restrictable at any time. The restrictions to the facets that Mam-
bo offers for browsing (c.f. Figure 2.25, bottom right corner) can not be combined to
form a single result set as in the other browsers.

However, Mambo could be modified to combine multiple widgets for many facets si-
multaneously. Another difference is the fact that it is the only browser studied that ex-
plicitly visualizes the structure within one facet (except for FacetMap and classical tree
representations in the standard classification part of some browsers). Its AspectZoom
widget is specialized to the visualization of tree structures and lends itself to be inte-
grated with Faceted Browsers, too.

Mambo interprets facets with a string type as structured by a tree instead of a list. This
eliminates the need to display long selection lists and replaces it with a less space con-
suming alternative. Although one could argue, that string completion could be a simi-
lar and, assumed the availability of a keyboard, the better choice in some cases, there
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is a variety of facets that could be efficiently displayed with the AspectZoom widget,
including partOf relationships (e.g. for time spans, geographic regions or body parts,
see also the section called “Reflecting the Facets Characteristics”).

The ease of use is additionally improved by a click-and-center behavior, that reduces
the necessary clicks to a minimum.

Figure 2.25. Mambo — Aspect Browsing of Music Data By Title

2.5. Categorizing SemVis
In this section we classify SemVis with the help of the before introduced categorization
criteria for visualization systems and compare it to the existing solutions mentioned
above.

SemVis covers the whole visualization process. Its main focus is on the support of the
formatting step, but the support of the preceding selection step (the filtering) and the
necessary structuring are also dealt with and visually supported by the system.

Another criteria of visualization systems is the degree of automatism and, related to
that, the degree of domain independence. Whereas SemVis aims at fully domain inde-
pendence but a semi-automatic mapping and structuring procedure, some systems try to
offer a fully automatic presentation of arbitrary data, e.g. the Faceted Browsers Long-
well or Noadster [Rut05]. The domain independence without configuration is not the
goal of SemVis.

The selection step is done visually in SemVis by Faceted Browsing. It is well-suitable
to implement the filtering ideas of the old framework. The following characteristics
of Faceted Browsers are fulfilled by the system: SemVis offers the possibility to clear
and add restrictions to facets, including the selection of multiple facet values and the
ability to choose value ranges. The use of specialized widgets for different facets which
explicitly show the facet structure is supported as well as the ranking of facets with the
help of metrics, the use of presetting and the customization of the user interface.

The focus of SemVis is on providing a global interface. The visualization of single
characteristics of the data allows for an overview of the data on a global level. However,
this does not necessarily require the explicit display of relations as in graph visualiza-
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tions. This can be optionally chosen. Rather the consequent mapping of facets to Visual
Variables to transport information supports the global interface. This is something that
none of the studied facet browsers does, with some exceptions (for single aspects) such
as the SIMILE timeline that is mashed up with Longwell or the integration of Google
Maps in Google Base. This classical cartography of data, using Visual Variables is done
by graph visualizations however (mostly using exclusively spatial dimensions and col-
or). SemVis combines the Faceted Browsing paradigm and the classical visualization
into one.

Depending on the output format SemVis can also generate an integrated interface. For
example, SemVis's 3D graphic output allows for an integrated view of structure and
detail by presenting a coarse grain, low detailed overview, which can be zoomed in,
making use of a Level of Detail (LOD)15 mechanism. Details on a single instance, in-
cluding a description and a textual representation of selected properties values, can be
found at the highest LOD.

Through a flexible mapping mechanism, SemVis is not limited to a specific display
paradigm, but the generated structure can have many shapes, and includes, aside from
tables and lists, also 3D variants.

A complete classification of many visualization systems for RDF data, compared to
familiar text document principles, can be found at [Rut05].

After having categorized SemVis in the existing solutions for the visualization of struc-
tured data and having introduced general terms and techniques, the next chapter elab-
orates the exact requirements for a semi-automatic system that can flexibly generate
customized visualizations for RDF data.

15Level of Detail — The principle of increasing detailed variants of a displayed object, depending on a criteria
such as the distance of the viewer to the object
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Chapter 3. Requirements for a
Flexible Visualization
This chapter describes the staged process for visualization that SemVis proposes, in-
cluding the configuration of mapping and filtering by the GUI. Since this process in-
volves many Actors and use cases we shortly give an overview of them, without speci-
fying the details of the mentioned knowledge repositories and definition files. This will
be done in Chapter 7.

3.1. Actors
SemVis assumes the following three actors to be involved in the visualization process:

The Programmer uses and extends the framework to realize new visualization struc-
tures for example. If she adds a new visualization platform she also has to describe this
platform to the system.

The Admin is, for instance, a technician in a museum. Her task is to define a presetting
of mapping and filter settings, suited to a special domain, that was not known at the
time of programming. She adds the presentation knowledge and configures SemVis
by writing definition files, or preferably through the Configuration GUI. The GUI en-
ables the Admin to configure the visualization structures. She is able to save and load
configurations. In this way, it is possible to develop many configurations for different
purposes and compare them easily.

The User is, for example, a visitor of the museum or a spectator of a generated website1,
who views and explores the data. It should be possible for him to specialize his view by
altering the mapping and refining the filters. Doing this, she is supported by the systems
User GUI, which can be realized in the output format, or by building a frame around
the presentation. The User should also be able to save her settings and later restore the
old state of exploration.

3.2. Use Cases
The following all-embracing scenario could take place in order to map a domain to a
final concrete visualization. Roughly spoken visualization and data are annotated with
meta data, the system is then able to make suggestions and the Admin can choose from
these prechosen possibilities. The scenario described here assumes the existence of a
configuration GUI, which is crucial for the full value of SemVis, since the meta infor-
mation on the structures, platforms and the general graphics knowledge can only be
offered to the involved actors via a GUI.

We assume the following scenario: The SemVis framework shall be used to visualize
semantic web data about a specific domain (available in RDF), Extensible 3D [X3D]
shall be added as a new visualization platform and a new visualization structure needs
to be described.

3.2.1. Extending SemVis (Programmer)
Figure 3.1 shows the steps that have to be taken by the Programmer:

1In a scenario, where a web user visualizes data for herself, the role of the Admin and the User may also be
played by one person in two subsequent steps.
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Figure 3.1. Use Cases — Extension by the Programmer

1. The Programmer describes the new visualization platform in the definition file.

2. She extends the framework by describing the new visualization structure.

3. She implements the algorithm building the structure and links the description to the
newly written Java class.

4. She creates a set of (nested) templates for the new presentation platform.

3.2.2. Configuring SemVis (Admin)
Figure 3.2 shows the steps that have to be taken by the Admin to configure SemVis. The
required order of these actions and the necessary reaction of the system are specified in
the corresponding Activity Diagram in Figure 3.3.

Figure 3.2. Use Cases — Configuration by the Admin
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The first step has to be taken by the system. It offers the Admin the possibility to load
existing configurations as a basis for further refinement (a). After that, the Admin can
define or change the domain and choose a visualization platform (b,p).

Figure 3.3. Activity Diagram — Configuration by the Admin

As soon as the domain is known, the system can start calculating metrics on the facets
and find out about the structure of the facets (c). This knowledge is necessary for later
suggestions to the user, such as the proposal of potential starting points (d). The sug-
gestions of the system, regarding the starting points, can be ignored or refined by the
Admin in the following step (e). After having defined the possible starting points for the
User, an initial setting for starting points is defined (f). Now, that the classes of primary
interest are defined, the system can examine the properties of these classes and suggest
facets that are most suitable for filtering and sorting, as well as an order for the facets,
based on the knowledge from step c). The order of the facets can be chosen according
to their quality as a Navigator (c.f. Section 2.3.2). The facets for filtering and sorting
may differ (g). Again, the Admin can reduce or extend the set of suggested facets for
filtering and sorting (h). In step (i), the system proposes suitable widgets for each facet
which can be replaced or confirmed by the Admin in step (j). These widgets can already
be used to conveniently define the initial filter settings for the User in step (k).

The mapping configuration is done in a similar way. The process starts with the pro-
posal of well-mappable facets by the system (l), again based on the knowledge from
step c). These suggestions are refined by the Admin (m). Now the system can propose
appropriate mapping widgets for each facet (n). These can also be exchanged by the
Admin (o). Before the proposal of display settings (i.e. the initial mapping) by the sys-
tem (q), it must be previously defined, which visualization platform is targeted (p). The
system needs this information to prefer those mappings, which are best suited to the
chosen platform. Besides the initial mapping, defaults for other display settings (styles
of textual information such as font-family and font-size) are presented to the Admin for
optional editing (r).

When both filter and display settings are completed, the Admin can choose to preview
the results of the configuration (m) and save it (n).
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3.2.3. Browsing with SemVis (User)

Figure 3.4. Use Cases — Browsing of the User

The X3D output generated by SemVis might be shown in a museum, eventually in a
CAVE2 in 3D or simply on a personal computers screen, loaded from a website and
rendered with an X3D browser. As shown in Figure 3.4, using SemVis comprises the
following actions:

1. The System loads the initial mapping and filter settings defined by the Admin.

2. The User chooses a starting point.

3. The User can modify the mapping (within the limitations defined by the Admin).

4. She can then modify the filters for the defined primaries (within the limitations de-
fined by the Admin)

5. The User can navigate through the scene or document.

6. The User can finally save her state including her personal mapping, view point and
other personal settings.

When saving the scene, SemVis has to save the chosen starting points, the facets and
filter settings, the mapping configuration and also the current view point, if the view
point can be changed.

2CAVE — Cave Automatic Virtual Environment. A cubic room with projectors directed to most of its sides
to enable an immersive virtual reality.
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Chapter 4. Fresnel, a Standard
Display Vocabulary for RDF
The Fresnel specification aims at providing a general purpose standard RDF display
vocabulary that can be used instead of many proprietary approaches, which have been
developed recently. The vocabulary is supported by the W3C and was released in 2005,
[FRESNEL]. It is written as an ontology itself. As such, it follows a fully declarative
way and can easily be extended. Furthermore, it is developed with the explicit intention
not to be limited to boxes (as used on CSS-styled XHTML websites) but can also be
used for other paradigms such as a graph. This characteristic makes it a good candi-
date for a uniform description of display knowledge in SemVis, where several display
paradigms have to be supported.

The vocabulary consists of a Lens and a Format part. The Fresnel Lens mechanism
transforms the graph of the RDF data into an ordered tree and thus takes the structuring
part of the visualization steps (c.f. Section 2.3.2), including a selection and ordering on
the property level and a mechanism to limit cyclic relationships to other resources. After
this serialization, it is well defined which properties are displayed and how the data is
ordered. The Fresnel Formats assign properties to presentation formats, which do very
general formating and offer mechanisms to further define the appearance with CSS.

SemVis uses the Fresnel vocabulary for defining and storing initial and generated dis-
play information. In addition to the advantage of providing a complete solution for the
description of display information, the declarative way of Fresnel also served as inspi-
ration for the SemVis mapping vocabulary, which will be described in the next chapter.
Due to the ease of Fresnels extensibility, it can also be considered to turn the mapping
vocabulary into a Fresnel extension.

The declarative style supports easy exchange and sharing of the display definitions. Due
to the standardization of the language, this is even possible between different tools.

The code examples following each description are all written in the Notation3 [N3]
syntax, as it counts for all examples throughout the thesis unless otherwise expressly
stated.

4.1. Fresnel Lenses
The Fresnel Lens mechanism transforms the RDF graph into an ordered tree and thus
picks a certain view on the data. It defines which properties of the instances, to which
the lens is applied, are to be shown and additionally defines an order of display for these
properties. The cyclic relationships that exist between RDF data can be broken into a
tree by limiting the recursion depth.
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  1 :eventLens rdf:type fresnel:Lens ;
  2    fresnel:purpose fresnel:defaultLens ;
  3    fresnel:classLensDomain hist:Event;
  4    fresnel:showProperties
  5     (
  6      hist:hasStartTime
  7      hist:relatedToFieldOf
  8      mid:hasImportance
  9      [
 10        rdf:type fresnel:PropertyDescription ;
 11        fresnel:property hist:hasInvolvedPerson ;
 12        fresnel:sublens :personLabelLens ;
 13        fresnel:depth "3"^^xsd:nonNegativeInteger ;
 14      ]
 15     ) ;
 16    fresnel:group :mainGr ;
 17 .

Example 4.1. Fresnel Lens Definition

An example for a fresnel:Lens definition in Fresnel using n3-Notation is shown
in Example 4.1. It states, that this Lens should be used by default (c.f. line
2) to display resources of the type hist:Event (c.f. line 3). Other values are
fresnel:labelLens or new purposes defined by the developer.

Further on, the Lens definition states that the properties hasStartTime, relat-
edToFieldOf and hasImportance should be displayed (c.f. lines 6-8).

The property hasInvolvedPerson is defined to be displayed via a sublens, namely
the personLabelLens (c.f. line 12). Sublenses are used to define that an related
instance shall be rendered with a specific lens. Figure 4.1 shows the abstract sublens
concept of Fresnel (on the left) and a possible instantiation (on the right). A sublens
allows for a different display of instances in different roles. While the person X is an
instance of the primary class Person and displayed in full detail, the other Person in-
stances are only displayed as items of secondary interest with a possibly reduced, or
completely different appearance.

This approach is well suitable for the idea of displaying related objects visually asso-
ciated to a primary class, rather than connected by explicit visual elements as arrows
or connection lines.

Figure 4.1. Use of Sublenses in Fresnel

The recursion depth for showing related instances with this lens is limited to a value
of "3" with the property fresnel:depth (c.f. line 13). This is actually not neces-
sary in this case and only defined for demonstration purposes, because the person-
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LabelLens does not make references to other Persons, so that it can not be called
recursively.

Finally, in line 16, it is stated that the Lens belongs to the mainGr group. The function
of Groups is defined in Section 4.3.

4.2. Fresnel Formats
Formats can be used to assign properties to special presentation formats. With the
help of a fresnel:Format it is possible to define presentation-paradigm-unspecif-
ic styling information such as additional content between each value, or labeling of
properties as well as the value format (e.g. display as image or as URL). The actual
appearance can be determined by CSS-classes which can be bound to a format. The
properties can be described in relation to their context, defining different formats for
the same property in different situations.

Example 4.2 shows the usage of a Fresnel format to define the format of hasStart-
Time property values. It states, that each hasStartTime property should be dis-
played without a label and its values should be styled according to the style class date.
This fresnel:Format also belongs to the mainGr group.

  1 :hasStartTimeFormat rdf:type fresnel:Format ;
  2    fresnel:propertyFormatDomain hist:hasStartTime ;
  3    fresnel:label fresnel:none ;
  4    fresnel:valueStyle "date"^^fresnel:styleClass ;
  5    fresnel:group :mainGr ;
  6 .

Example 4.2. Fresnel Format Definition

4.3. Fresnel Groups
Groups can be used as a convenience construct to bundle styling definitions that be-
long to all members of the group including resources, properties, labels and values. It is
possible to define common labelFormats, propertyStyles or resourceS-
tyles.

The following listing (c.f. Example 4.3) defines a Group where all properties have a
common stylesheet (c.f. line 2) a colon following the label (c.f. line 3) and all properties
have a styleClass attribute with the value standardPropertyStyle (c.f. line
4).

  1 :mainGr rdf:type fresnel:Group ;
  2    fresnel:stylesheetLink "styles/person.css" ;
  3    fresnel:labelFormat [ :contentAfter ":" ];
  4    fresnel:propertyStyle 
  5       f"standardPropertyStyle"^^fresnel:styleClass ;
  6 .

Example 4.3. Fresnel Group Definition

4.4. Primaries (Starting Points)
The definition of Primaries, the starting points and basis for further refinement by
faceted search as described in Section 2.3.2, is already part of the Fresnel vocabulary
and can be done within the Fresnel definition of a group (c.f. Example 4.4). In Fresnel,
a class that is defined by the property fresnel:primaryClasses can be directly
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displayed on the root level. Other classes may only be used with sublenses. Example 4.4
defines that only the class hist:Event is handled as a Primary.

:mainGr rdf:type fresnel:Group ;
 fresnel:primaryClasses (
   hist:Event
 );
.

Example 4.4. Definition of Primaries

4.5. Selectors and Inference
Selectors are needed to specify sets of instances or properties. Three variants of selectors
exist in Fresnel. Besides the simple selectors, that can select classes, a selector language
can be used to specify a set of instances. Either Fresnels own language, the Fresnel
Selector Language [FSL], or SPARQL as a standard selection language, can be used
for selection.

Please note that the selection performed with the selectors is not the selection described
before as the first step of a visualization process (the filtering of resources). Selectors
are responsible for the selection of potential instances, to which a lens or format applies
and for a selection on the property level to define the properties that are to be shown
for a resource, handled by a lens.

The Fresnel vocabulary has no support of defining inference, but delegates this to the
inference layer of the RDF repository. For example, there is no support to define on the
Fresnel level if subclasses should be considered or not. However, some inference can
be stated with the help of the FSL, but this is limited to the subPropertyOf and subClas-
sOf relationships. It can be stated, that a certain property, including its subproperties
is chosen, by prefixing the query with the character "^". Section 4.5 [34] gives an
example1 for this.

# properties to be shown for resources handled by this lens:
# all foaf:knows properties
# as well as properties declared as subproperties of
# foaf:knows (in the associated schema)
^foaf:knows

# exampleLens' domain: all instances of class foaf:Person
# (or any of its subclasses) older than 60
^foaf:Person[ex:age/text() > 60]

# properties to be shown for resources handled by this lens: 
# foaf:knows and any subproperty of foaf:knows,
# provided that the value is an instance of class
# foaf:Person or one of its subclasses
^foaf:knows[^foaf:Person]

Example 4.5. Inference in Fresnel

4.6. Application and Reusability
As mentioned above, Fresnel is presentation paradigm agnostic and not limited to the
box paradigm. As an example IsaViz employs Fresnel descriptions to define the style

1Taken from the FSL reference: http://www.w3.org/2005/04/fresnel-info/fsl/#rdfsowl
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of its graph layout (since Version 3.0). Display definitions written by SemVis in Fres-
nel can be read by applications such as IsaViz or the Longwell browser of the SIMI-
LE project. Other browsers, that employ Fresnel are the SWT RDF browser and Fres-
nel editor Cardovan (discontinued) and the PHP RDF browser Horus (discontinued)
[BLP05]. More projects and engines that employ the vocabulary are currently devel-
oped, such as the domain specific Geonames Browser for geographical data, which uses
Fresnel and Fresnel extensions, [Geonames Browser].

In addition to the benefit of being paradigm agnostic, the modularization of Fresnel
supports reuse and portability. The specification is not only modularized into a lens
and format part, but also into a core and an extended part. The extended vocabulary
allows to specify alternate properties and to merge similar property values. Other fea-
tures cover support for different output-types, direct linking to CSS stylesheets and lens
inheritance. This modularization allows applications that implement Fresnel to option-
ally support the extended part, guaranteeing a minimum of exchangeability between all
Fresnel applications.

4.7. Implementation
For the processing of Fresnel definitions there are two Java implementations. The first is
used within the Longwell browser and is currently used in SemVis. This implementation
is referred to as Fresnel Engine below. The other is called [JFresnel] and was recently
developed as a standalone project. Additionally, there is a PHP implementation called
Arago [GH05].

The Fresnel Engine produces a tree of Java objects such as the example result tree
shown in the Object Diagram Figure 4.2. A Result is assigned one PropertyRe-
sultSet which contains a list of PropertyResults and NoSuchPropertyRe-
sults2 for every property listed in the Fresnel definition. Each PropertyResult
is assigned one LabelResult and one ValueResultSet, which contains the in-
stances of ValueResult.

The engine performs a recursion, which can be limited in depth, to create the values,
that are results themselves. In this case ValueResult wraps another Result.

Figure 4.2. Fresnel Result Tree

2If no property could be found for a requested property, a NoSuchPropertyResult Object is placed in
the tree (Null Object design pattern [Woo96]).
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The XML output of the tree is slightly differently structured and follows the schema
that can be found in Section A.1.1. An example of the output is the PIM presented in
Section 7.2.3.
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Chapter 5. A Visualization Ontology
This chapter describes the need for a formal definition of visualization and graphic
knowledge for SemVis and subsequently introduces, a basic solution, the Graphics.owl
ontology, that is used by the system.

5.1. Describing and Formalizing the Field of Visu-
alization
A lot of theoretical knowledge and facts gained from experiments with the human per-
ception are available for the field of visualization and graphic. If it is possible to for-
malize generally accepted facts and knowledge in shape of an ontology, this can be
used as a basis for decisions by visualization systems. The graphical knowledge, once
made explicit, could easily be reused by other applications, when published as part of
the semantic web,in a standardized language such as RDF. Specializations and person-
alizations of these general facts could overwrite the general settings, if necessary.

This graphical or visualization ontology could include statements concerning the max-
imum number of lines in a chart that can be easily distinguished by color. And it might
also include sets of colors that go well together. The independence or mutual influence
of variables could also be stated in this vocabulary. As an example take the length and
width of an object. These two dimensions could be given meaning and they can be var-
ied independently in a visualization. However, the visual variable area is dependent
on these two variables and therefore can not represent semantics along with the other
two variables.

Duke et.al. [DBD04] describe the need for an ontology of visualization with regard to
collaboration, (web) services, and as a basis for research and education. [ARS06] wrote
a prototype ontology for visualization, building on existing yet fragmentary taxonomies
such as the Data State Model which is algorithm oriented and several taxonomies which
are data oriented.

Unfortunately these ontologies lack a definition of Visual Variables, since their focus
is not on graphical knowledge, and therefore do not fulfil SemVis needs.

Because creating a complete ontology is beyond the scope of this work, this ontology
only contains very basic terms, such as the Visual Variables or the properties to define
which of these variables are orthogonal. But such an ontology could be extended to
equip the visualization system with further graphic knowledge that is valuable, when
mapping via the user interface.

5.2. Overview
The Graphics.owl ontology has been developed to define a vocabulary of visualization
for use in SemVis. Figure 5.1 gives an overview of all classes (drawn as ellipses), prop-
erties (drawn as labels on the arrows or as attributes of the classes) and instances (drawn
as rectangles). The following sections will explain the purpose of each class in detail.
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Figure 5.1. The Graphics.owl ontology — Overview

5.3. VisualVariable
Visual Variables have been described by [Ber81] and are the elements of the graphical
vocabulary [Zeh04]. Bertin identifies the visual variables area, size, brightness, texture,
color, orientation and shape, which have been formalized in the ontology. Several other
variables like depth, rotation and transparency have been added, to fulfil the needs of
other output formats than print (c.f. Figure 5.1).

:VisualVariable
      a       owl:Class ;
.

The reflexive, symmetric property hasDependentVariable states that two Vi-
sualVariables are not fully orthogonal, but depend on each other.

:hasDependendVariable
      a       owl:ObjectProperty , owl:SymmetricProperty ;
      rdfs:domain :VisualVariable ;
      rdfs:range :VisualVariable ;
      owl:inverseOf :hasDependendVariable ;
.

Mackinlay described and tested the value of Visual Variables for the transmission of
data belonging to the three categories nominal, ordinal or quantitative [Mac86]. A Vi-
sualVariables ability to be used for data of one of these categories can be stated by
the property hasVisualizationAbility. This allows the visualization system
to automatically propose appropriate VisualVariables.

:hasVisualizationAbility
      a       owl:ObjectProperty ;



A Visualization Ontology

39

      rdfs:domain :VisualVariable ;
      rdfs:range :VisualizationAbility ;
.

Every VisualVariable defines a default null value that states which value carries
the least meaning, but does not make the whole instance disappear. E.g. the null value
for Color is the DiscreteVisualValue grey, however values of simple data
types are also allowed.

:hasDefaultNullValue
      a       rdf:Property ;
      rdfs:domain :VisualVariable ;
.

The type of a VisualVariables values is defined by the property hasValue-
Type.1

:hasValueType
      a       rdf:Property ;
      rdfs:domain :VisualVariable ;
.

Other properties are the dependency of the viewpoint of the user (dependsOnView-
er) and the dependency of animation (dependsOnAnimation).

:dependsOnViewer
      a       owl:DatatypeProperty ;
      rdfs:domain :VisualVariable ;
      rdfs:range xsd:boolean ;
.

:dependsOnAnimation
      a       owl:DatatypeProperty ;
      rdfs:domain :VisualVariable ;
      rdfs:range xsd:boolean ;
.

5.4. DiscreteVisualValue
VisualVariables can be assigned a number of possible DiscreteVisual-
Values. The property offersDiscreteValue is used to do that. The associated
inverse property is called belongsToVisualVariable.

:DiscreteVisualValue
      a       owl:Class ;
.

:offersDiscreteValue
      a       owl:ObjectProperty ;
      rdfs:domain :VisualVariable ;
      rdfs:range :DiscreteVisualValue ;
      owl:inverseOf :belongsToVisualVariable ;
.

:belongsToVisualVariable
      a       owl:ObjectProperty ;
      rdfs:domain :DiscreteVisualValue ;
      rdfs:range :VisualVariable ;
      owl:inverseOf :offersDiscretValue ;
.

1This is needed to dynamically generate values for a variable (c.f. Section 6.4)
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The assignment of numeral values can be done with the property hasNumeralValue
and hasFractionalValue (a sub property of hasNumeralValue). While has-
FractionalValue directly assigns a value between 0 and 1, hasNumeralValue
assigns arbitrary numbers, whose proportional value has to be dynamically calculated
in relation to the range of all values that are available. The property hasStringVal-
ue can be used to assign a string representing the value (e.g. #FF0000 for Red). The
declaration of DiscreteVisualValues does not implicate that no other values for
a VisualVariable exist.

:hasNumeralValue
      a       owl:DatatypeProperty ;
      rdfs:domain :DiscreteVisualValue ;
      rdfs:range xsd:float ;
.

:hasFractionalValue
      a       owl:DatatypeProperty ;
      rdfs:subPropertyOf :hasNumeralValue ;
      rdfs:domain :DiscreteVisualValue ;
      rdfs:range xsd:float ;
.

default:hasStringValue
      a       owl:DatatypeProperty ;
      rdfs:domain :DiscreteVisualValue ;
      rdfs:range xsd:string ;
.

With the class VisualValueSet it is possible to define sets of DiscreteVisu-
alValues that a VisualVariable offers. This can be useful to define colors which
are a good fit, for example.

:VisualValueSet
      a       owl:Class ;
      rdfs:subClassOf rdfs:Bag ;
.

:offersValueSet
      a       owl:ObjectProperty ;
      rdfs:domain :VisualVariable ;
      rdfs:range :VisualValueSet ;
.
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5.5. VisualElement

Figure 5.2. The Graphics.owl Ontology — VisualElements

Any object that can be seen in the visualization is a VisualElement. Subclasses
define ObjectVisualizers and RelationVisualizers (c.f. Figure 5.2). A
PrimaryVisualizer is a special ObjectVisualizer and defines all objects
which can be used to visualize Primaries (c.f. Example 4.4).

:VisualElement
      a       owl:Class ;
.

:ObjectVisualizer
      a       owl:Class ;
      rdfs:subClassOf :VisualElement ;
.

:PrimaryVisualizer
      a       owl:Class ;
      rdfs:subClassOf :VisualElement ;
.

:RelationVisualizer
      a       owl:Class ;
      rdfs:subClassOf :ObjectVisualizer ;
.

RelationVisualizers can be used to explicitly show the relation between two
values. They split into symmetric and asymmetric, depending on the fact if they are
directed or not. DirectedArrow is an example for a directed, asymmetric Rela-
tionVisualizer whereas UndirectedArrow and ConnectionLine are ex-
amples for a symmetric one. It can also be stated if they are animated or not. Other
elements for explicit relation visualization are possible [Pol06].

:isSymmetric
      a       owl:DatatypeProperty ;
      rdfs:domain :RelationVisualizer ;
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      rdfs:range xsd:boolean ;
.

:isAnimated
      a       owl:DatatypeProperty ;
      rdfs:domain :RelationVisualizer ;
      rdfs:range xsd:boolean ;
.

For each VisualElement it can be stated which VisualVariables it supports.
Although any element could theoretically have almost any variable, it should be able to
discourage the use of a variable with a particular element. For example, Transparency
should not be used with lines to carry meaning.

:offersVisualVariable
      a       owl:ObjectProperty ;
      rdfs:domain :VisualizationPlatform, VisualElement,
 VisualizationStructure ;
      rdfs:range :VisualVariable ;
.

5.6. VisualizationStructure
A VisualizationStructure describes the characteristics of the structure that
is the result of a technique of visualization, including the shape, and suitability for
different presentation scenarios (suitableFor) but not the technique itself.

:VisualizationStructure
      a       owl:Class .

:suitableFor
      a       owl:ObjectProperty ;
      rdfs:domain :VisualizationStructure;
      rdfs:range :PresentationScenario .

Additionally, for each VisualizationVariable, it can be defined, if the structure
supports its display (property already introduced in Section 5.3).

:offersVisualVariable
      a       owl:ObjectProperty ;
      rdfs:domain :VisualizationPlatform, VisualElement,
 VisualizationStructure ;
      rdfs:range :VisualVariable ;
.

5.7. VisualizationPlatform
The class VisualizationPlatform represents a final output format. Each plat-
form must be described regarding to its possibilities. Besides the available Visual-
Variables, each VisualizationPlatform states, if it offersAnimation,
if it offersInteraction and how many spatial dimensions are supported (c.f. Ex-
ample 5.1).
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:VisualizationPlatform
      a       owl:Class .

:offersAnimation
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:boolean .

:offersInteraction
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:boolean .

:offersSpatialDimensions
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:nonNegativeInteger .

:offersVisualVariable
      a       owl:ObjectProperty ;
      rdfs:domain :
               VisualizationPlatform,
               VisualElement,
               VisualizationStructure ;
      rdfs:range :VisualVariable ;
.

Example 5.1. VisualizationPlatform Class

5.8. PresentationScenario
The PresentationScenario describes a use case of the visualization. Here the
hardware and characteristics of the construction and the probable audience can be de-
clared. The current vocabulary allows to define, if stereo display is supported (of-
fersSpatialDimension), how many colors the systems graphic devices can dis-
play the maximum resolution of the target system is, if videos can be played (offer-
sAnimation) and if interaction is possible at all (offersInteraction). The po-
sition of the user, i.e. if the situation is immersive or not, can be stated by the property
isImmersive.

Three of the properties are also used to describe the VisualizationPlatform:
offersSpatialDimensions, offersAnimation and offersInterac-
tion have both classes as their domain (c.f. Example 5.2).
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:PresentationScenario
      a       owl:Class .

# shared with VisualizationPlatform:
:offersSpatialDimensions
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:int .

:offersColor
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario ;
      rdfs:range xsd:int .

:offersResolution
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario ;
      rdfs:range xsd:int .

# shared with VisualizationPlatform:
:offersAnimation
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:boolean .

# shared with VisualizationPlatform:
:offersInteraction
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario, VisualizationPlatform;
      rdfs:range xsd:boolean .

:isImmersive
      a       owl:DatatypeProperty ;
      rdfs:domain :PresentationScenario ;
      rdfs:range xsd:boolean .

Example 5.2. PresentationScenario Class

5.9. Facts
Besides the visualization vocabulary, the Graphics.owl ontology additionally contains
facts of the field of visualization. VisualVariables such as Size, X-Pos, Y-Pos,
Z-Pos, Color, Transparency, Orientation etc. are described in regard to their ability of
visualizing nominal, ordinal or quantitative data and also in regard to their mutual de-
pendency. Furthermore a basis of DiscreteVisualValues such as small, middle,
big for Size or red, green, blue for Colors is defined. Also instances of common Vi-
sualizationStructures such as TimeLine, Table etc. are described. Here it has to be
considered, if these should be rather described as classes with appropriate restrictions
and if all these facts should be kept separately from the vocabulary.
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Chapter 6. A Novel Mapping
Vocabulary for Semantic
Visualization
For visualization purposes, a means of defining a mapping from facets to Visual Vari-
ables is needed. This mapping definition should be reusable, platform independent and
allow for fine configuration as well as for a maximum of automatism.

The Fresnel display vocabulary, described in the Chapter 4, covers the styling of in-
stances and relations with its Format part. However, it is not appropriate for the map-
ping from facets to Visual Variables. The needed mapping functionality is similar, but
still different from the one of Fresnel. Fresnel offers hooks for CSS styling classes, but
these are intended to decorate display elements with concrete parameter settings for the
color, line width or size of all properties or instances of a certain class. The mapping
vocabulary should be able to assign properties to Visual Variables, as defined in the
Graphics.owl ontology in Section 5.1.

The Fresnel style information, resulting in the class-attributes of the result tree, could
have been used for the mapping, but this would have been a misappropriation. Even if
the style information was used, a lot of extensions would have been required, in order
to add advanced mapping features.

Therefore, we developed a new basic vocabulary for the mapping, orientated at Fresnel.
It is, as is Fresnel, fully declarative and written in OWL. This allows for a consistent
editing of the definition files and integration of the two languages. The definition of the
mapping in an extra file makes it possible to quickly exchange a mapping and define
alternative mappings for special purposes.

This chapter will explain the challenges for a flexible mapping in general, along with
a description of the single constructs in the new mapping vocabulary, which is defined
by the Mapping.owl ontology. Short examples of their use in a mapping definition file
can be found at the end of each section.

6.1. Overview

Figure 6.1. Subclasses of Mapping

As Figure 6.1 shows, the mapping from facets to Visual Variables can be subdivided
into implicit, explicit and complex PropertyMappings. An ImplicitMapping
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can be configured using several parameters. It then calculates the values of the Visu-
al Variable for a concrete facet value based on these parameters. By contrast, an Ex-
plicitMapping allows for manually mapping single values to each other. The best
from both worlds can be found in the MixedMapping. It can be configured to implic-
itly map the values, however, if there is need, single values can be assigned manual-
ly. Complex structures of a visualization can be described with a ComplexMapping
which is able to process more than one Visual Variable and can consider the context
of a value.

Figure 6.2 gives an overview of the complete mapping vocabulary, together with ex-
ample instances (darkgrey rectangles). The following sections describe the elements of
the language in detail.

Figure 6.2. Mapping.owl

6.2. Mapping
The super class of all mappings is the class Mapping. A first, but abandoned idea was
to define the mapping by a single statement, using the property map:isMappedTo:

facetA isMappedTo visualVariableB .

However, this turned out to be insufficient for defining details of a mapping and was
not consistent with the way Fresnel works. In terms of clean ontology construction, this
is even semantically wrong, since the fact of being mapped to visualVariableB is not
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generally true for facetA, but applies only in a certain application for a certain purpose.
Instead of using a simple statement, the mapping is now modelled as an instance of the
Mapping class.

Common to all Mappings, is the option of being included in a legend or not. For this
purpose, all Mappings share the boolean property includeInLegend.

:Mapping
 a owl:Class ;
.

:includeInLegend
 a owl:DatatypeProperty ;
 rdfs:range xsd:boolean ;
 rdfs:domain :Mapping ;
.

6.3. PropertyMapping
A PropertyMapping defines the mapping from one facet to a VisualVariable.
However, this only draws a general connection between a facet and a VisualVari-
able. The interesting part remains the mapping of the values, which is left to the sub-
classes of PropertyMapping.

:PropertyMapping
 a owl:Class ;
 rdfs:subClassOf :Mapping;
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :sourceFacet ;
  owl:minCardinality "1"^^sxd:nonNegativInteger ;
 ]
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :targetVariable ;
  owl:minCardinality "1"^^sxd:nonNegativInteger ;
 ]
.

The properties sourceFacet and targetVariable1 must be defined for each
PropertyMapping and therefore the minimum cardinality for these two properties is
set to 1. The restriction of the maximum cardinality of sourceFacet and target-
Variable is left to the subclasses of PropertyMapping.

6.3.1. sourceFacet
The property sourceFacet points to the source property of the mapping. The range
is rdf:Property.

:sourceFacet
 a owl:ObjectProperty ;
 rdfs:range rdf:Property ;
 rdfs:domain :PropertyMapping ;
.

6.3.2. targetVariable
The required property targetVariable points to the target
graphics:VisualVariables of the mapping. There may be more than

1I avoided to use the terms range and domain in this context, to avoid confusion with the domain and range
of properties used in RDFS.
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one targetVariable defined with ComplexMappings. All the defined
graphics:VisualVariables will be affected by the mapping.

:targetVariable
 a owl:ObjectProperty ;
 rdfs:range graphics:VisualVariable ;
 rdfs:domain :PropertyMapping ;
.

PropertyMapping has three specializations: ImplicitMapping, Explic-
itMapping and MixedMapping which are now further described.

6.4. ImplicitMapping
An ImplicitMapping is a PropertyMapping which implicitly maps the facets
values to VisualVariables and does not require an explicit mapping for each val-
ue. When performing an ImplicitMapping, SemVis takes all source values within
defined limits and maps them to the whole available range of Visual Variable values,
which is defined by a minimum and maximum. An ImplicitMapping must have
exactly one sourceFacet and targetVariable.

:ImplicitMapping
 a owl:Class ;
 rdfs:subClassOf :Mapping;
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :targetVariable ;
  owl:cardinality "1"^^sxd:nonNegativInteger ;
 ]
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :sourceFacet ;
  owl:cardinality "1"^^sxd:nonNegativInteger ;
 ]
.

To configure the mapping, several parameters such as the limits for source values and
target values, as well as the interpolation type can be defined by properties of the Im-
plicitMapping. Section 6.4.3 explains these properties that are common to all im-
plicit mappings.

Depending on the characteristics of the source and target values it can be distinguished
between variants of ImplicitMappings (c.f Figure 6.3). Section 6.4.4 and the following
sections describe the four possible combinations of mappings from continuous to con-
tinuous, continuous to discrete, discrete to discrete and discrete to continuous. Addi-
tional properties that are required for a particular variant are introduced at the end of
each section.



A Novel Mapping Vocabulary for Semantic Visualization

49

Figure 6.3. Mappings between Discrete and Continuous Values

6.4.1. Relations between ObjectProperty Values
Depending on the existing in-between-relationships, the data can be classified as nom-
inal, ordinal or quantitative (also c.f. Section 2.3.3). As described in Section 5.3, the
VisualVariables are equipped with a property to state their ability for each of these
characteristics of the data. But the relations between the values can be used to also allow
the implicit mapping of discrete values of owl:ObjectPropertys. This applies equally to
value sets on the source and the target side of the mapping.

While all ObjectProperty values are nominal data, some of them do not offer any order
relation and are consequently not ordinal. If, however, such an order relation exists,
it can further be distinguished between a total order (e.g. forming a list structure) and
a partial order (e.g. forming a tree structure). See Figure 6.4 for an example of tree
structured data that is mapped to color values. The similarity of the colors is based on
the structural distance of two nodes in the tree.

Figure 6.4. Mapping Ordinal Data (Tree Structure)

An example for the more usual case of a list structure was already given inFig-
ure 6.3 (bottom, right), where the discrete source values are ordered by the relation
greaterThan.

Quantitative data offers information on the proportion between two values. This applies
to all numeral values, but is difficult to express for ObjectProperty values in RDF due
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to the fact that this can not be expressed directly by a binary relation. However, design
patterns for the description of n-ary relations exist, [N-Ary].

6.4.2. Adding Order and Ratio to ObjectProperty Values
Alternatively to the definition of a new order relation between ObjectProper-
ty values and connecting them by this means, a numeral value can be at-
tached, which is able to provide the ordinal information and additionally al-
so quantitative information. The properties graphics:hasNumeralValue and
graphics:hasFractionalValue can be reused for this purpose (c.f. Sec-
tion 5.4).

6.4.3. Common properties
These properties are common to all ImplicitMappings.

Value Types
To interpret the source values correctly and to be able to generate correct target values,
the type of the source and target values has to be known to the system. The type of the
target variable values is given by the graphics:hasValueType property of the
graphics:VisualVariable. The type of the values for the source facet does not
need to be the same for all values. Since that, it has to be stated, which type is handled
by the mapping.

:sourceValueDatatype
 a owl:ObjectProperty ;
 rdfs:domain :ImplicitMapping;
.

Source Value Limits
The setting of limits for the source values is optional. The properties sourceVal-
ueLowerLimit and sourceValueUpperLimit define the span of source values
which are mapped. Other values, outside this span, are either cut2 or set to the limiting
values, depending on the value for the property sourceValuesOutOfLimits. If
no limits are defined, the range of source values should be calculated from all available
source values.

:sourceValueLowerLimit
 a rdf:Property ;
 rdfs:domain :ImplicitMapping;
.

:sourceValueUpperLimit
 a rdf:Property ;
 rdfs:domain :ImplicitMapping;
.

:sourceValueOutOfLimits
 a owl:DatatypeProperty ;
 rdfs:range [ 
  a owl:DataRange ;
  owl:oneOf ("limits"^^xsd:string "cut"^^xsd:string)
 ] ;
 rdfs:domain :ImplicitMapping;
.

2This equals a selection on a higher processing level.
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Target Value Range
The properties targetValueMin and targetValueMax are required and define
a minimum and maximum value for the graphics:VisualValues. The range of
the two properties could be restricted to equal the type of the target variables values.

:targetValueMin
 a rdf:Property ;
 rdfs:domain :ImplicitMapping;
.

:targetValueMax
 a rdf:Property ;
 rdfs:domain :ImplicitMapping;
.

Interpolation
An ImplicitMapping needs to define, how the interpolation of values is done. The
property interpolationType is used for that and can have the values linear, log-
arithmic or exponential3. The default value should be linear.

:interpolationType
 a owl:DatatypeProperty ;
 rdfs:range [ 
  a owl:DataRange ;
    owl:oneOf (
      "linear"^^xsd:string
      "logarithmic"^^xsd:string
      "exponentiell"^^xsd:string
    )
 ] ;
 rdfs:domain :ImplicitMapping;
. 

6.4.4. Continuous to Continuous
The most simplistic case is the mapping of continuous facets to continuous Visual Vari-
able values. This can be configured by the common properties already introduced be-
fore. Figure 6.3 (top, left) shows an example of this kind of mapping. Here fraction-
al values, which could represent the importance of something (expressed as numerals,
ranging from 0 to 1), are mapped to a color gradient that is described by using the
properties targetValueMin (set to graphics:Red) and targetValue-
Max (set to graphics:Yellow). Please note that not the whole range of potential
source values is chosen, but the source values are limited. Only the remaining range is
mapped, where the lower limit value corresponds to yellow and the upper limit value
to red. Other values can be set to the limiting values, for example. This behavior can
be achieved by setting the property sourceValuesOutOfLimits to limits instead
of the default value cut.

6.4.5. Continuous to Discrete
A mapping from a continuous facet to discrete visual values can also easily be per-
formed. Figure 6.3 (bottom, left) shows how intervals of values are mapped to discrete
numeral values. For example, again values from the facet importance (ranging be-
tween 0.0 and 1.0 ) can be mapped to the discrete numeral values of the Visual-
Variable Size with the fixed sizes 0.0, 0.5, and 1.0.

3This property needs more parameters to be configured and should make use of [MathML].
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However, the discrete values on the target side can also be ObjectProperty values. In
this case the definition of an order relation between the values, as described in Sec-
tion 6.4.1, is required. If only the mutual distinction of values is the goal of a mapping,
but no information on the relation between the source values shall be expressed, the
source values can be mapped arbitrarily to the discrete or quantized target values.

discreteStepSize and discreteStepCount
The step size can be set with the property discreteStepSize or, alternatively,
with the property discreteStepCount in addition to the required maximum and
minimum values for the target variable.

:discreteStepSize
 a owl:DatatypeProperty ;
 rdfs:range xsd:float ;
 rdfs:domain :ImplicitMapping;
. 

:discreteStepCount
 a owl:DatatypeProperty ;
 rdfs:range xsd:nonNegativeInteger ;
 rdfs:domain :ImplicitMapping;
. 

Set of Target Values
The set of objects that are used as values for the mapping can be optionally limited with
the explicit definition of a graphics:VisualValueSet. As an example such a set
could define a number of colors that match well. Predefined sets are provided as facts in
the Graphics.owl ontology. A set of DiscreteVisualValues can be defined with
the property discreteTargetValueSet.

:discreteTargetValueSet
 a owl:ObjectProperty ;
 rdfs:range graphics:VisualValueSet ;
 rdfs:domain :ImplicitMapping;
. 

The existence of a TargetValueSet should be required by restrictions, if no tar-
getValueMin and targetValueMax values are given.

6.4.6. Discrete to Continuous
The other way around also the mapping from discrete ObjectProperty values or numer-
als to continuous values has to be possible. Again providing an order between the object
values is required. Figure 6.3 (top, right) shows, how object values, that form a list are
mapped to values within a range from 10.0 to 15.0. An example for this is the position-
ing of sorted items in space. If quantitative values are offered (c.f. Section 6.4.1), the
ratio of the source values can be mapped to the target values. If only ordinal values are
provided, as in the example, the target values will all have equal distance (for a linear
mapping).

6.4.7. Discrete to Discrete
For this kind of mapping, the problems of order and quantitative information for dis-
crete values apply to the source and target side of the mapping. Figure 6.3 (bottom,
right) shows, how the object values labeled NoImportance, MediumImportance, and
HighImportance are implicitly mapped to DiscreteVisualValues from the Vi-
sualVariable Size. For this example, consider the values of the facet and the Vi-
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sualVariable as related to each other by the greaterThan relationship. This
forms two lists, which can be implicitly mapped.

Again, the unproportional mapping of values, requires quantitative information.

6.5. ExplicitMapping
With the help of an ExplicitMapping, values can be manually mapped to each
other. This is often necessary for discrete values of ObjectPropertys which lack any
structure between them (either on the source or target side), so that no implicit map-
ping can be performed. But an explicit manual mapping might also be needed for
owl:DatatypePropertys with integers or strings as a range, whenever a precise
value assignment is required. See Figure 6.5 for an example.

Figure 6.5. Explicit Mapping of Discrete Unstructured Values

:ExplicitMapping
 a owl:Class ;
 rdfs:subClassOf :Mapping ;
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :targetVariable ;
  owl:cardinality "1"^^sxd:nonNegativInteger ;
 ]
 rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :sourceFacet ;
  owl:cardinality "1"^^sxd:nonNegativInteger ;
 ]
.

In the following, the constructs are described that are necessary for the mapping of the
single values and also, how it is proceeded, if a value is missing.

6.5.1. ValueMapping
An instance of ValueMapping maps a discrete facet value to a discrete Visual Vari-
able value. ValueMapping is a subclass of Mapping and inherits the property in-
cludeInLegend. This way, it can consistantly be defined, if this ValueMapping
should appear in a legend.

:ValueMapping
 a owl:Class ;
 rdfs:subClassOf :Mapping;
.

The following two properties are used with a ValueMapping and define the source
and target value.4

4Currently targetValue allows only graphics:DiscreteVisualValues to be the target value.
This should be relaxed.
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:sourceValue 
 a rdf:Property ;
 rdfs:domain :ValueMapping ;
 rdfs:range rdf:Resource ;
.
 
:targetValue
 a owl:ObjectProperty ;
 rdfs:domain :ValueMapping ;
 rdfs:range graphics:DiscreteVisualValue ;
.

6.5.2. ValueMappingsContainer
ValueMappingsContainer is not a Mapping itself, but a class that works as a
container for all instances of ValueMapping belonging to an ExplicitMapping.
It extends the rdf:Bag class.

:ValueMappings
 a owl:Class ;
 rdfs:subClassOf rdf:Bag;
.

The container providing the set of ValueMapping instances is attached to an Ex-
plicitMapping with the required property hasValueMappings.

:hasValueMappings
 a owl:ObjectProperty ;
 rdfs:domain :ExplicitMapping ;
 rdfs:range :ValueMappingsContainer ;
.

6.5.3. nullValue
The optional property nullValue points to a
graphics:DiscreteVisualValue that should be used, if no ValueMapping
exists for a given source value. It is not intended to define the smallest value for a vari-
able used in the visualization (this is defined by the targetValueMin property), but
the value that carries the least possible semantics. This is usually an average value, such
as grey in the field of colors.

If this property is undefined, the null value defaults to the
graphics:VisualVariables graphics:hasDefaultNullValue. If this
is also missing, a warning should be issued and the average value of all Discrete-
VisualValues should be calculated. The null value owerwrites the VisualVari-
ables default null value, to allow different null values for different presentations.

:nullValue
 a owl:ObjectProperty ;
 rdfs:domain :ExplicitMapping ;
 rdfs:range graphics:DiscreteVisualValue ;
.

6.6. MixedMapping
MixedMapping combines implicit and explicit mappings by inheriting from both
classes. When evaluating the mapping, a value from the ExplicitMapping over-
writes values from the ImplicitMapping. This allows to roughly configure a map-
ping implicitly, but still partially define special values by hand.

:MixedMapping
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 a owl:Class ;
 rdfs:subClassOf :ImplicitMapping, :ExplicitMapping ;
.

After having introduced the straightforward implicit and explixit mappings, the next
section will deal with more advanced PropertyMappings.

6.7. ComplexMapping
The process of building a visualization structure can be seen as a complex mapping.
This allows for a consistant handling of the construction of visualization structures and
simple mappings. ComplexMapping is a subclass of PropertyMapping (c.f. Fig-
ure 6.6).

:ComplexMapping
 a owl:Class ;
 rdfs:subClassOf :PropertyMapping ;
.

It is attributed as complex, because the facet values can result in values for multiple
VisualVariables (targetVariable is not restricted to 1). Moreover, the val-
ues might be dependent on the context. As an example, take a mapping to spatial vari-
ables. The final value for the position depends on other values of neighbour objects,
e.g. objects might need to be rearranged to avoid overlapping. Similarly the color value
of an item might depend on color values of adjacent items to ensure a necessary level
of contrast for the distinction of two values.

ComplexMappings are not even limited to one sourceFacet (the cardinality is
not restricted to 1). This becomes necessary with the construction of periods in time-
lines, for example. Here values from a startTime and endTime facet need to be pro-
cessed.

A ComplexMapping is also responsible for providing explicit values in the form of
scales. This is because a scale should be drawn dependently of the actually occurring
values and must be positioned according to the structure itself.

Subclasses of ComplexMapping (c.f. Figure 6.6, TimeHelixMapping) can be used
to describe a class of mappings having certain requirements, e.g. the need for partic-
ular sourceFacets or other characteristics, e.g. the VisualVariables that are
affected by the mapping.

While it can be stated relatively easily that a subclass of ComplexMappings has cer-
tain VisualVariables as targetVariables, the restriction of sourceFacet
values is more difficult. The solution, also displayed in the diagram as pseudo code,
proposes the restriction of the sourceFacet to a specific facet. An instance of the
mapping could meet this requirement by making its sourceFacet a subProper-
tyOf the required sourceFacet. Inference allows it to be used instead of the de-
fined property.

However, it has to be found a way to restrict more than one sourceFacet. Also, a re-
striction to types of a facet values, rather than to specific facets, is desirable. E.g. all
properties with a range of xsd:date, xsd:dateTime or xsd:time. This way every facet
that offers time values could be assigned to the visualization structure. One possible
solution is presented in Section 6.7.3.

The definition of ComplexMapping requires more investigation, also in regard to the
possibilities of staying in OWL DL, since using a property as a value is only possible
in OWL FULL.
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Figure 6.6. ComplexMapping

6.7.1. url
One question that occurred, when thinking about ComplexMappings, was the best
place for defining the algorithms that build the structures. As these are operational se-
mantics at the moment, they cannot be defined directly in the mapping definition files.
Although the description of the algorithms with a rule language could be possible, the
adoption of a non-imperative rule language was beyond the scope of this work. We
decided to put the information on the construction of a visualization structure into Ja-
va classes, which are referred to by the other mapping constructs, being aware of the
lack of resusability in comparison to the other descriptions. This means, when introduc-
ing a new ComplexMapping to the system, a Java class, extending the class Com-
plexMapping, has to be written.

The class that provides a notation of the algorithms, which perform the ComplexMap-
ping is defined with the property url .

:url
 a owl:DatatypeProperty ;
 rdfs:range xsd:anyUri ;
 rdfs:domain :ComplexMapping;
. 

6.7.2. buildsStructure
This property points to an instance of VisualizationStructure as defined in the
Graphics.owl ontology. The ComplexMapping defines its requirements and config-
uration possibilities from the construction point of view. However, facts on the charac-
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teristics and abilities of a particular visualization structure are in the focus of the class
graphics:VisualizationStructures. A ComplexMapping can be linkend to
an instance of this class with the property buildsStructure.5

:buildsStructure
 a owl:ObjectProperty ;
 rdfs:range graphics:VisualizationStructure ;
 rdfs:domain :ComplexMapping ;
.

6.7.3. Example
The following listing gives an example of a ComplexMapping, including a possible
definition of a subclass that restricts its sourceFacet values to selected types. In the
example an instance of a class called TimeHelixMapping is defined. This class is
restricted to allow only properties with the range xsd:dateTime, xsd:date and xsd:time
as values. Here a solution employing a meta property class is chosen.

# property meta class
# (globally restricting the range to selected classes)
map:TimeProperty
      a owl:Class ;
      owl:equivalentClass
              [ a  owl:Class ;
                owl:intersectionOf (
                    [ a  rdf:Property;
                                         rdfs:range [
                        a owl:Class ;
                                            owl:unionOf (           
                        xsd:dateTime
                        xsd:time
                        xsd:date )
                       ]
                                    ]
                                    rdf:Property
                    )
        ]
.

# (locally restriction of the TimeHelixMapping sourceFacet to
# propertys that are instances of the above defined meta class)
:TimeHelixMapping
    a owl:Class
    rdfs:subClassOf map:ComplexMapping;
    rdfs:subClassOf
        [ a owl:Restriction ;
                owl:someValuesFrom map:TimeProperty ;
                owl:onProperty map:sourceFacet
              ]
. 

:aTimeHelixMapping
      a map:TimeHelixMapping ;
      :buildsStructure graphics:3DHelix ;
      :sourceFacet hist:hasStartTime ;
      :sourceFacet hist:hasEndTime ;
.

5It has to be further investigated, if the separation of VisualizationStructure and ComplexMap-
ping is justified or if they should be merged.
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6.8. Inference
When mapping data from different sources, the names of the properties to be mapped
are unlikely to be the same. This would require a central global naming instance and
contradict the idea of the web [OWL]. But instead of adding a mapping for every
new similar, but differently named property, the ontologies can be mapped and con-
nected to each other. This approach also improves the interconnectedness of vocab-
ularies. Two possibilities exist to map properties from one vocabulary to another:
rdfs:subPropertyOf and owl:equivalentPropertyOf.

With the help of the rdfs:subPropertyOf relationship, it can be stated that a
property is a specialization of another more general property. This means for a property,
that is mapped to a Visual Variable, that also every sub property is mapped to this
Visual Variable.

However, using rdfs:subPropertyOf relationships is inappropriate in the case of
total equivalence of two properties. When it is sufficient for an instance to be related
by a property A to also be related to a property B, and not only necessary, the proper-
ties should be related with the OWL construct owl:equivalentProperty6 (c.f.
Example 6.1). The mapping defines this inference by default, however it depends on
the reasoner which is used, if the facts are evaluated. While rdfs:subPropertyOf
only requires a fast RDF(S) reasoner, owl:equivalentProperty necessitates the
use of a computational more expensive OWL reasoner. The inference behavior can not
be turned off for the moment. However, an equivalent approach as in the Fresnel Se-
lector Language [FSL] could be chosen, where the inference is switched on by adding
a special character in front of the statement.

# relating properties with rdfs:subPropertyOf
presidents:born rdfs:subPropertyOf hist:hasStartTime.

# relating properties with owl:equivalentProperty
hist:hasStartTime owl:equivalentProperty someMidLevelOntology:begins.

Example 6.1. Ontology Mapping by Inference

6.9. Explicit Display of Relations
Relations, i.e. to ObjectProperty values, can be displayed explicitly. Usually, the fact
that there is a connection between two instances is visualized implicitly by spatial neigh-
bourhood. That means child instances are displayed within a PrimaryVisualiz-
er or attached to it so that they can be visually associated with their parent. The Fres-
nel sublens mechanism supports this by allowing to choose varying representations for
child instances.

However, there might be situations, when more than one class is defined as a Prima-
ry, or there might exist a reflexive relationship for a Primary. Then it is useful no to
display additional instances as children, but to display the instances where they are
positioned by the mapping and show the relation between a pair of instances with the
help of additional graphical elements. A standard means for this is the use of arrows or
connection lines depending on the directedness of the relation. These are described as
RelationVisualizers in the Graphics.owl ontology (see also Section 5.1).

6owl:sameAs, which states equality between individuals, could also be used to map properties. However,
since this requires treating properties as individuals, this is only allowed in OWL FULL, which has expensive
reasoning characteristics. C.f. the definition of equivalentProperty: http://www.w3.org/TR/owl-ref/#equiva-
lentProperty-def



A Novel Mapping Vocabulary for Semantic Visualization

59

The definition of explicit relation visualization can be done in SemVis in the same way
that properties are mapped to Visual Variables: The targetVariable7 of a Prop-
ertyMapping might also point to a RelationVisualizer. RelationVisu-
alizers may be used in combination with a mapping to VisualVariables.

6.10. Limitations
In contrast to Fresnel, the SemVis mapping is unaware of the context at the moment.
A property is always mapped to the same Visual Variable. However, there might be
situations, where, depending on the values of other assigned Visual Variables, such as
position in space, different graphical properties have to be employed. At the current
state a mapping is equally valid for the whole visualization and every Primary whereas
Fresnel allows for the definition of Formats for properties depending on the instance
that uses them. Only in ComplexMappings it is possible to map multiple properties
to the same Visual Variable.

7It could be argued that the property targetVariable should be renamed to allow this generalization.
It could be changed to target.
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Chapter 7. A Model-Driven
Architecture for Flexible
Visualization
The system architecture of SemVis follows the principles of a Model-Driven Architec-
ture (MDA) as described by the Object Modelling Group (OMG). A Model-Driven Ar-
chitecture consists of Platform Independent Models (PIM) that are transformed, mostly
with the help of additional knowledge, to more specific models, the Platform Specific
Models (PSM) and finally into code, representing the most specific model. A model
can only be referred to as platform specific or platform independent when seen from a
certain viewpoint, since the terms are relative. This viewpoint is the final Visualization
Platform throughout this chapter.

The reason for the model-driven approach was the need for a maximum of variability.
The system should be variable in two ways (c.f. Figure 7.1): At first the Visualization
Platform should be exchangeable, and secondly the mapping of facets to Visual Vari-
ables should be exchangeable as well. Figure 7.1 shows the two variation points. The
first is the mapping from facets (on the left side) to a general concept of a Visual Vari-
able (center), which is formalized by the VisualVariables of the Graphics.owl
vocabulary. In a second step, these general concepts have to be transformed to means
that the final Visualization Platform offers (right side). Some concepts might not be
applicable to a particular Visualization Platform. In this case the system creates an al-
ternative representation.

Figure 7.1. Variability of SemVis

The structure of this chapter is as follows: Section 7.1 shows what the model transfor-
mation steps in SemVis are, which additional knowledge is added at what time of the
overall process and which PIMs and PSMs are generated. Section 7.4 describes this
additional knowledge and Section 7.2 describes each application of the MDA pattern
in detail. Finally, Section 7.5 compares SemVis to the Graphical Modeling Framework
for Eclipse (GMF).
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7.1. A Model-Driven Architecture

Figure 7.2. SemVis as a Model-Driven Architecture

Figure 7.2 shows the architecture of SemVis from the point of the Model-Driven Ar-
chitecture. The SemVis architecture performs three transformation steps:

The first transformation is done by the integrated Fresnel Engine. It uses the presenta-
tion knowledge in the fresnel-definition.n3 file for selecting and formatting the RDF
data, which represents the Domain Model. The added presentation knowledge is fully
presentation-paradigm-agnostic. There is the possibility to output the generated model
as XML, however, SemVis proceeds directly with the Java objects, that are generated
by the Fresnel Engine1.

The second step is performed by SemVis Mapping Component. With the additional
presentation knowledge, defined in the mapping-definition.n3 file, it adds presentation-

1See also Section 4.7
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paradigm-specific information. Yet the generated model is still not bound to a specif-
ic Visualization Platform. It exists in the shape of Java objects, what allows for easy
computation on these objects.

The third and last transformation step is finally left to the Java Emitter Templates [JET]
which do the rendering of the code for the final Visualization Platform (PSM) such as
X3D or SVG. A template, which processes the Java objects from the second step and
writes platform specific code can be created for arbitrary Visualization Platforms.

With the XML Jet template, it is also possible to again receive the generated model as
XML output, which represents another PIM that can be transformed with other tools,
for instance.

7.2. Applications of the MDA Pattern
The MDA pattern is applied multiple times by the SemVis architecture. This section
describes the three transformation steps and compares the associated models: The RDF
data, the Fresnel tree as a PIM, the SemVis Model as a further PIM and finally the Code
for the Visualization Platform (here X3D2 code) as the PSM. All transformation steps
can not be done fully automatically, but require the input of additional knowledge to
control the transformation (c.f. Figure 7.2).

As an example, data from a knowledge base about US presidents is taken and trans-
formed step-by-step into X3D code. Please note, that uninteresting parts are left out
and replaced by "...".

7.2.1. RDF Data (Domain Model)
The domain model of SemVis is represented by RDF data. The following excerpt of an
RDF file (c.f. Example 7.1) defines an instance of the class President. The notation
is RDF/XML.

2Extensible 3D — A standardized format for the description of 3D scenes [X3D]
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  1 ...
  2 
  3 <rdf:Description 
  4   rdf:about='http://simile.../presidents/item#Abraham%20Lincoln'>
  5  <a:label>Abraham Lincoln</a:label>
  6  <b:type resource="#President" />
  7  <d:imageURL>
  8   http://upload.../Abraham_Lincoln.jpg
  9  </d:imageURL>
 10  <d:url>http://en.wikipedia.org/wiki/Abraham_Lincoln</d:url>
 11  <d:presidency rdf:resource='16' />
 12  <d:term>19</d:term>
 13  <d:term>20</d:term>
 14  <d:birth>1809-02-12</d:birth>
 15  <d:death>1865-04-15</d:death>
 16  <d:index>16</d:index>
 17  <d:dieInOffice>yes</d:dieInOffice>
 18  <d:party>Republican</d:party>
 19  <d:birthPlace>Hardin County, Kentucky, USA</d:birthPlace>
 20  <d:deathPlace>Washington, D.C.</d:deathPlace>
 21  <d:religion>no affiliation</d:religion>
 22  <d:birthLatLng>38.210509,-84.875859</d:birthLatLng>
 23  <d:deathLatLng>38.895,-77.036667</d:deathLatLng>
 24  <exhibit:origin>
 25   http://simile.../presidents/presidents.html#Abraham%20Lincoln
 26  </exhibit:origin>
 27 </rdf:Description>
 28 
 29 ... more Descriptions ...

Example 7.1. RDF Description of the Domain Model

7.2.2. First Transformation — RDF to Fresnel Tree
The first application of the MDA pattern is performed by the Fresnel Engine. The trans-
formation is passed the RDF data (more precisely a selected fraction of it) and addi-
tionally the fresnel-definition.n3 file that defines how to pick a certain view on the data
and how the data has to be formated. After the transformation, the structured data is
then represented as a model of Java objects. Alternatively, the SIMILE Fresnel Engine
allows the rendering of the Fresnel model as XML, conforming to the schema fresnel-
output.xsd, that can be found in the appendix (c.f. Section A.1.1).

Example 7.3 shows an example for this XML version of the Fresnel Platform Indepen-
dent Model, continuing the example from Section 7.2.1. Although only selected proper-
ties with exactly one value per property are picked by Example 7.2, the amount of nec-
essary code has been drastically increased. The resource title is taken from the property
rdfs:label (c.f. Example 7.2, line 11; Example 7.3 line 5). A link to the stylesheet
that applies to all members of the group mainGr was added (c.f. Example 7.2, line 1-6;
Example 7.3 line 4). Values of the property imageUrl are marked to be displayed
as an image by the attribute output-type="image" (c.f. Example 7.2, line 24;
Example 7.3 line 9). The style-attributes are turned into class attributes of
the values (c.f. Example 7.2, line 26; Example 7.3 line 6). A new label, replacing the
standard property label is added to the properties religion and party (c.f. Exam-
ple 7.2, line 32; Example 7.3 line 27).
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  1 :mainGr rdf:type fresnel:Group ;
  2  fresnel:stylesheetLink "styles/person.css" ;
  3  fresnel:primaryClasses (
  4   e:President
  5  );
  6 .
  7 
  8 :personLens rdf:type fresnel:Lens ;
  9  fresnel:purpose fresnel:defaultLens ;
 10  fresnel:classLensDomain e:President;
 11  fresnel:title rdfs:label;
 12  fresnel:showProperties
 13   (
 14   d:imageURL
 15   d:birth
 16   d:party
 17   d:religion
 18   ) ;
 19  fresnel:group :mainGr ;
 20 .
 21 
 22 :urlFormat rdf:type fresnel:Format ;
 23  fresnel:propertyFormatDomain d:imageURL;
 24  fresnel:value fresnel:image ;
 25  fresnel:label fresnel:none ;
 26  fresnel:propertyStyle "image" ;
 27  fresnel:group :mainGr ;
 28 .
 29 
 30 :partyFormat rdf:type fresnel:Format ;
 31  fresnel:propertyFormatDomain d:party ;
 32  fresnel:label "Party: "^^xsd:string ;
 33  fresnel:group :mainGr ;
 34 .

Example 7.2. Example Fresnel Definition
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  1 <results>
  2  <resource 
  3   uri="http://simile.../presidents/item#Abraham%20Lincoln">
  4   <link>styles/person.css</link>
  5   <title>Abraham Lincoln</title>
  6   <property class="image"
  7    uri="http://simile.../presidents/property#imageURL">
  8    <values>
  9     <value class="" output-type="image">
 10      <title>
 11       http://upload.wikimedia..../Abraham_Lincoln.jpg
 12      </title>
 13     </value>
 14    </values>
 15   </property>
 16   <property uri="http://simile.../presidents/property#birth">
 17    <values>
 18     <value class="date">
 19      <title>1809-02-12</title>
 20     </value>
 21    </values>
 22   </property>
 23   <property uri="http://simile.../presidents/property#party">
 24    <label class="">
 25     <content />
 26     <title>Party:</title>
 27    </label>
 28    <values>
 29     <value class="">
 30      <title>Republican</title>
 31     </value>
 32    </values>
 33   </property>
 34   <property uri="http://simile.../presidents/property#religion">
 35    <label class="">
 36     <content />
 37     <title>Religion:</title>
 38    </label>
 39    <values>
 40     <value class="">
 41      <title>no affiliation</title>
 42     </value>
 43    </values>
 44   </property>
 45 
 46   ... more properties ...
 47 
 48  </resource>
 49 
 50  ... more resources ...
 51 
 52 </results>

Example 7.3. Fresnel Tree as XML Output

7.2.3. Second Transformation — Fresnel Tree to SemVis
Model
The second application of the MDA pattern is performed by the Mapping Component
of SemVis (c.f. Figure 7.2). The transformation is passed the Fresnel tree together with
the mapping-definition.n3 file that defines which Visual Variables are used to represent
which facets of the data.
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The SemVis transformation adds display-paradigm-specific information to the model
from the last transformation step. The mapping definition files are evaluated and a new
model that contains values for each Visual Variable is build. Although the values of the
Visual Variables are now included in the model, the model is yet not limited to a spe-
cific Visualization Platform. If no value is provided by the mapping, the transformation
process puts default values for all Visual Variables. In this way, the next transformation
step (PIM to PSM) does not have to check for null values, but can expect values for all
the variables. That way, the template code can be kept simple and the mapping logic
can easily be handled on the SemVis level.

The option of transforming the XML Fresnel output tree with XSLT into the SemVis
model has been rejected, since the complexity of the XSLT code soon became to high
and only little means of structuring were possible. For instance, there was no object
orientation supported. String conversions and time functions, as they were frequently
needed, could have been provided with the help of extensions. But the parsing and
evaluating of the mapping definitions, as well as the building of complex visualization
structures, would have been very inconvenient and only possible with still more exten-
sions to XSLT.

This let to the decision to work with the Fresnel Java objects instead of XSLT. Figure 7.3
shows the SemVis Java object model as a diagram of nested boxes. The wrapped Fresnel
Java objects are shown on the right side of each visualization class. The model consists
of VisualizationElements and of VisualizationBoxes, which implement
container functions. For example, they are able to calculate their size recursively based
on the size of their children3.

All ResourceVisualizations are VisualizationElements that stand for
a primary class's instance and are controlled by the VisualizationStructure.
The structure can modify the Visual Variable values of all its ResourceVisual-
izations and by this, it represents a coordinating instance. For a detailed description
of the SemVis PIM classes, please refer to the JavaDoc.

Figure 7.3. Illustration of the SemVis Model as Java Objects

3This behavior, which is something, that also was not possible with XSLT, is only rudimentary implemented,
because here the integration of an existing advanced layout box model should be aimed at, similar to the
[SWT] toolkit.
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If it is necessary, SemVis can also output an XML version of the Java Object model
that it generates, with the help of a template (c.f. Example 7.5 for an example of the
XML code). It conforms to the schema semvis.dtd which can be found in Section A.1.2.
Due to space limitations, the listing shows only an excerpt of the resulting code.

Example 7.4 defines an ExplicitMapping that maps the facet party to the Visual
Variable Color and explicitly maps four discrete values. After the transformation,
using the mapping, the Color value can be found on line 5 as an attribute of a Re-
sourceVisualization.

  1 default:partyMapping
  2       a map:PropertyMapping ;
  3       map:automatic "false"^^xsd:boolean ;
  4       map:hasValueMappings default:Party2ColorValueMappings ;
  5       map:sourceFacet d:party ;
  6       map:targetVariable graphics:Color ;
  7       map:targetValueNull graphics:grey ;
  8 .
  9 
 10 default:Party2ColorValueMappings
 11       a map:ValueMappingContainer ;
 12 
 13       rdf:_1  [ a  map:ValueMapping ;
 14         map:sourceValue "No Party" ;
 15         map:targetValue graphics:white
 16   ] ;
 17       rdf:_2  [ a  map:ValueMapping ;
 18         map:sourceValue "Democratic-Republican" ;
 19         map:targetValue graphics:lightRed
 20   ] ;
 21       rdf:_3  [ a  map:ValueMapping ;
 22         map:sourceValue "Democratic" ;
 23         map:targetValue graphics:green
 24   ] ;
 25    rdf:_4  [ a  map:ValueMapping ;
 26         map:sourceValue "Republican" ;
 27         map:targetValue graphics:red
 28   ] ;
 29 
 30 .

Example 7.4. Mapping of the Facet party to the Visual Variable Color
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  1 <VisualizationStructure>
  2 
  3  <ResourceVisualization
  4   <!-- Visual Variables-->
  5   color="#FF00FF"
  6   size="2"
  7   xPos="0.56f"
  8   yPos="1.5f"
  9   zPos="2.0f"
 10   rotation="0.5f"
 11   transparency="0.5f" >
 12 
 13   <StaticContent>
 14    <Label content="Abraham Lincoln" />
 15    <Description content="missing" />
 16   </StaticContent>
 17 
 18   <PropertyVisualizationBox>
 19 
 20    <PropertyVisualization>
 21     <Label content="Party:" />
 22     <ValueVisualizationBox>
 23      <ValueVisualization>
 24       <Label content="Republican" />
 25      </ValueVisualization>
 26    </ValueVisualizationBox>
 27    </propertyVisualization>
 28 
 29    ... more PropertyVisualizations ...
 30 
 31   </PropertyVisualizationBox>
 32 
 33  </ResourceVisualization>
 34 
 35  ... more ResourceVisualizations ...
 36 
 37 </VisualizationStructure>

Example 7.5. SemVis Model as XML Output

7.2.4. Third Transformation — SemVis Model to Code
for Final Visualization Platform
One way to perform this last transformation step and generate the final presentation
platforms code (PSM) was to have a render method in each class of the SemVis PIM.
But this results in a subclass for each class of the PIM per presentation variant. Addi-
tionally we might even want to define multiple variants per presentation platform).

The currently chosen approach takes the model of Java objects from the last transfor-
mation step and hands it to a set of nested templates. This decouples the generation of
the PIM from further transformations.

The transformation to the code for the presentation platforms is done with the help
of the Java Emitter Templates [JET]. The JET template technology is a code writing
mechanism and part of the Eclipse Model To Text [M2T] project. Alternatively, also
any other template language could be employed.

The XML output of the SemVis model, already presented in the last section can be
equally generated with JET. In this case it does not produce the final code, but another
PIM. This XML output can then be taken as input to arbitrary XML transformation
languages and by this an interface to, for instance, XSLT is provided.
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  1 ...
  2 <Transform rotation="0 1 0 -0.6094943094478699">
  3    <Transform translation="0.0 -63.503563 -35.0"
  4     scale="1.3061224 1.3061224 1.3061224" >
  5 
  6    <Billboard axisOfRotation="0 1 0">
  7    
  8     <!--  Board behind resource -->
  9     <Shape><Box size="12.0 24.72 0.05"/>
 10      <Appearance>
 11       <Material diffuseColor="1.0 0.0 0.0" />
 12      </Appearance>
 13     </Shape>
 14          
 15     <LOD range="140">
 16      <Transform scale="1 1 1" translation="0 0 0.2">
 17 
 18       <!-- static content -->
 19        <Transform translation="0.0 11.36 0">
 20 
 21         <!-- label -->
 22         <Transform translation="0.0 0.0 0">
 23          <ProtoInstance name="text">
 24              <fieldValue name="text" value="Abraham Lincoln"/>
 25              <fieldValue name="color" value="1 1 1"/>
 26              <fieldValue name="size" value="1.0" />
 27              <fieldValue name="lodRange" value="130"/>
 28          </ProtoInstance>
 29         </Transform>
 30         <!-- description -->
 31 ...
 32       </Transform></Transform><!-- end static content -->
 33 
 34       <Transform translation="0 -1.0 0.2">
 35 ...

Example 7.6. Generated X3D Code
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  1 ...<!-- property vis box (containing all properties) -->
  2        <Shape>
  3         <Box size="12.0 22.72 0.05"/>
  4         <Appearance>
  5          <Material diffuseColor="0.1 0.1 0.3" />
  6         </Appearance>
  7        </Shape>
  8 
  9         <!-- single property  (imageURL) -->
 10         <Transform scale="1 1 1" translation="0.0 3.5 0.2">
 11          <Shape>
 12           <Box size="12.0 15.719999 0.05"/>
 13           <Appearance>
 14            <Material diffuseColor="0.1 0.1 0.3" />
 15           </Appearance>
 16          </Shape>
 17 
 18          <Transform scale="1 1 1" translation="0 0 0.2">
 19 
 20              <!-- value vis box transformation -->
 21              <Transform translation="0.0 0.0 0">
 22 
 23              <Transform scale="1 1 1" translation="0 0 0.2">
 24               
 25                <Transform scale="12.0 15.719999 1"
 26                 translation="0.0 0.0 0.0">
 27                 <ProtoInstance name="image">
 28                  <fieldValue name="imageUrl" 
 29                  value="http://upload.../Abraham_Lincoln.jpg" />
 30                 </ProtoInstance>
 31                </Transform>
 32 
 33              </Transform></Transform>
 34         <!-- single property (birth)  -->
 35 ... 
 36               <!-- Single value -->
 37                <Transform translation="0.0 0.0 0.0">
 38                 <ProtoInstance name="textBoard">
 39                  <fieldValue name="text" value="12.2.1809" />
 40                  <fieldValue name="color" value="0.1 0.1 0.3" />
 41                  <fieldValue name="size" value="12.0 1.0 1.0" />
 42                 </ProtoInstance>
 43                </Transform>
 44  ... 
 45            <!-- label -->
 46              <Transform translation="0.0 0.5 0">
 47             <ProtoInstance name="textBoard">
 48              <fieldValue name="text" value="Party: " />
 49              <fieldValue name="color" value="0.6 0.2 0.2" />
 50              <fieldValue name="size" value="12.0 1.0 0.05" />
 51             </ProtoInstance>
 52            </Transform>
 53 ...
 54                <!-- Multiline text value -->
 55                <ProtoInstance name="text">
 56                 <fieldValue name="text" value="Republican"/>
 57                 <fieldValue name="color" value="0.0 0.0 0.0"/>
 58                 <fieldValue name="size" value="0.5" />
 59                </ProtoInstance>
 60 ...

Example 7.7. Generated X3D Code (continued)

Figure 7.4 shows a schematic picture of the X3D objects described by the code from
the listing as it was rendered by a particular X3D Jet template. The static content is
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drawn as a rectangle containing a title and a description. The dynamic content is at-
tached vertically below and consists of a rectangle for each property. If the label is to be
shown, it is displayed on top of the rectangle, followed by the values. Depending on the
fresnel:value and the style attributes, different representations are chosen for the
values. Image values are rendered as images and date values are rendered as text in a
readable date format. Values of ObjectProperties are displayed recursively as resources
themselves, and are arranged next to each other within the rectangle representing the
property. Example 7.6 shows how the values for the Visual Variables have been inte-
grated into the X3D code. A Transform node (c.f. Example 7.6, line 2) represents
the resource (a president) and is attached the values for the spatial dimensions and the
size (lines 2-4) . The Visual Variable Color is assigned as a diffuseColor value
of an Appearance node (line 11) that determines the appearance of the box framing
the whole resource (line 9).

Figure 7.4. X3D Instantiation of the Abstract SemVis Box Model

7.3. Complete System Overview
Figure 7.5 shows, in addition to the Model-Driven Architecture aspects, the flow of
data from and to all definition files and knowledge bases, as well as the two different
GUI configuration components and Visualization Platforms. The sources of additional
knowledge that are needed for the configuration components are described in detail in
the next section (Section 7.4).

The core SemVis component can be configured via the Admin Configuration GUI,
which can be used by the Admin to make SemVis load, generate and store display def-
initions. The Admin Configuration GUI supports the Admin with knowledge that the
system gains from facet metrics, general graphical knowledge from the Graphics.owl
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ontology and facts about the visualization platforms. The range of possibilities to which
the User is limited (regarding further filtering and mapping) is defined in the user-
limitation.n3 file. An export function allows for the separate storage of the generated
fresnel-definition.n3 file to reuse it for other browsers, which also support Fresnel as
their display vocabulary (c.f Section 4.6).

The User Configuration GUI is generated by SemVis and allows the User to proceed
with customizing the visualization to his needs and pick several views on the data,
within the limits defined by the Admin. The User Configuration GUI can either be
embedded in the final Visualization Platform, if the platform supports interaction and
dynamic reload of data, or build a frame around the static, more document like content
and regenerate the content according to the Users settings, if necessary. The User Con-
figuration GUI is able to load and save the Users settings and state of the browsing
situation to a file.

Figure 7.5. SemVis Complete Architecture

7.4. Additional Knowledge of the System
Besides the fresnel-definition.n3 file, the mapping-definition.n3 file and the templates,
that are used as input to the transformations of the models, additional knowledge is
required that serves as a knowledge base for SemVis to assist the Admin and the User
in configuring these definition files. This comprises information on the capabilities of
the Visualization Platforms, available Visualization Structures and their possibilities,
general graphical knowledge and, meta information on the data that is to be visualized.
Figure 7.6 gives an overview of the used definition files and their dependencies.



A Model-Driven Architecture for Flexible Visualization

73

Figure 7.6. Overview of all Ontologies and Definition Files

7.4.1. Meta Data
Since we want to visualize semantic web data, there is no need for a special mecha-
nism for meta information to describe the data. The data is already structured and self
descriptive. If this is insufficient for the visualization purposes, the ontology can be
extended and connected to upper level ontologies to gain more semantics. If we want to
use other data, e.g. from databases, text-files or other semi structured sources, the data
has to be converted to RDF for the moment. In the case of databases, at least informa-
tion on simple data types is already available.

Meta data that has been retrieved from metrics and analysing the data is also made
available to the system (c.f. Section 2.3.2).

7.4.2. Available Visualization Platforms and Presenta-
tion Scenarios
Each available platform must be described regarding to its possibilities. For example the
graphical power needs to be described: How many spatial dimensions are there (2D or
also 3D)? Is it possible to use color or not? Is animation and interaction possible? How
high is the resolution? Where is the position of the user, i.e. is the situation immersive or
not? Is sound also available? Equally the Presentation Scenarios have to be described.
Scenarios could be the set up for a CAVE or a single screen of a home PC.

The definition of the available visualization platforms and scenarios with their abilities
is noted in the file visualization-platforms-facts.n3. Also c.f. Example 7.8 and Exam-
ple 7.9.
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  1 :XHTML
  2       a       graphics:VisualizationPlatform ;
  3       graphics:offersVisualVariable
  4               graphics:Saturation , graphics:Height ,
  5               graphics:Y-Pos , graphics:Roundness ,
  6               graphics:Area , graphics:LineWidth ,
  7               graphics:Texture , graphics:Transparency ,
  8               graphics:Color , graphics:GreyValue ,
  9               graphics:Order , graphics:Visibility ,
 10               graphics:Contrast , graphics:Length ,
 11               graphics:Brightness, graphics:Size ,
 12               graphics:X-Pos;
 13      :offersAnimation "false"^^xsd:boolean ;
 14      :offersInteraction "false"^^xsd:boolean ;
 15      :offersSpatialDimensions "2"^^xsd:integer ;
 16 .
 17 
 18 :X3D
 19       a       graphics:VisualizationPlatform ;
 20       graphics:offersVisualVariable
 21             graphics:Saturation , graphics:Z-Pos ,
 22             graphics:PositionInStructure , graphics:LineWidth ,
 23             graphics:Orientation ,  graphics:Texture , 
 24             graphics:Vibration , graphics:Color , 
 25             graphics:Order , graphics:Blur , 
 26             graphics:Contrast , graphics:Shape , 
 27             graphics:Brightness , graphics:X-Pos ,
 28             graphics:Volume , graphics:GlowingPulsation ,
 29             graphics:BlinkingFrequency , 
 30             graphics:Height , graphics:Roundness , 
 31             graphics:Y-Pos , graphics:Area ,
 32             graphics:RotationSpeed , 
 33             graphics:Rotation , graphics:Transparency , 
 34             graphics:GreyValue , graphics:Depth ,
 35             graphics:DistanceFromViewer , 
 36             graphics:TimeOfVisibility , graphics:Visibility , 
 37             graphics:Length , graphics:Size;
 38      :offersAnimation "true"^^xsd:boolean ;
 39      :offersInteraction "true"^^xsd:boolean ;
 40      :offersSpatialDimensions "3"^^xsd:integer ;
 41 .

Example 7.8. Definition of XHTML and X3D as VisualizationPlatforms
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  1 :CAVE
  2       a       graphics:PresentationScenario ;
  3       graphics:isImmersive "true";
  4       graphics:offersResolution "2400";
  5       graphics:offersColors "16000000";
  6       graphics:offersSpatialDimensions="3";
  7 .
  8 
  9 :SingleScreen
 10       a       graphics:PresentationScenario ;
 11       graphics:isImmersive "false";
 12       graphics:offersResolution "1600";
 13       graphics:offersColors "16000000";
 14       graphics:offersSpatialDimensions="2";
 15 .
 16 
 17 :MobilePhone
 18       a       graphics:PresentationScenario ;
 19       graphics:isImmersive "false";
 20       graphics:offersResolution "256";
 21       graphics:offersColors "2";
 22       graphics:offersSpatialDimensions="2";
 23 .

Example 7.9. Definition of Presentation Scenarios

7.4.3. Available Visualization Structures
The system has to know which structures are there and which possibilities the structures
offer. It can be stated, for instance, which spatial dimensions a structure offers and if it
supports infinity in one or many directions. It can also be stated, if it is suitable for a
CAVE, a Single Screen or a Power Wall4 installation.

  1 :Helix
  2       a       VisualizationStructure ;
  3       graphics:offersVisualVariable 
  4           graphics:Height ,
  5           graphics:Width ,
  6           graphics:Depth ,
  7           graphics:Color ;
  8       graphics:infinitySupported "true"^^xsd:boolean;
  9       graphics:suitableFor :CAVE ;
 10 .

Example 7.10. Definition of a Visualization Structure

The vocabulary for the structures themselves can be found in the Graphics.owl ontology
an the vocabulary for the mapping of facets to structures in the Mapping.owl ontology.

7.4.4. General Graphical Knowledge
General graphical facts do not have to be defined by the Programmer for each visual-
ization. These facts can be used by SemVis to suggest suitable presetting for the con-
figuration. Two examples are the ability of a VisualVariable to represent quan-
titative data or the dependency between two VisualVariables. The knowledge is
contained in the Graphics.owl ontology that has been introduced in detail in Chapter 5.

4A projection on a (optionally bended) wall that offers some immersion and uses a 3D stereo projection
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7.4.5. Limitations of the User
The User may only filter some facets and may only define mappings for a certain set
of properties. This is necessary to confront the end user with a reasonable amount of
choices. The restrictions are created by the Admin as described in Chapter 3.

In Longwell, the description of the filterable facets is stated with the property
facet:FacetSet from the facet vocabulary5. I reuse this vocabulary for defining
the filterable facets and store the facts in the file user-limitations-facts.n3. An example
of this definition file can be found in Example 7.11. A facet:FacetSet needs to
define a list of rdf:Propertys to specify the facets which are displayed and their
order (c.f. lines 4-5). With the property facet:types, a list of classes, to which this
facet:FacetSet applies, can be declared. The value facets:allTypes, used
here, makes this facet:FacetSet apply to any type.

  1 :semVisExampleFacets rdf:type facets:FacetSet ;
  2  facets:types facets:allTypes ;
  3  facets:facets (
  4    hist:hasStartTime
  5    mid:relatedToFieldOf
  6  ) ;
  7 .

Example 7.11. User Limitations of the Filtering

Since the property facet:facets points to a list, the order of the entry can be used
as the order of the facets in the GUI.

The limitations the Admin makes to the set of mappable properties are also stored in
the file user-limitations-facts.n3, and are defined in analogy to the limitation of fil-
terable facets. For this purpose, the mapping vocabulary contains the necessary terms
map:MapablePropertiesSet and map:mapableProperties. An example
of a map:MapablePropertiesSet instance is given in Example 7.12. The on-
ly property map:mapableProperties points to a list of rdf:Propertys. The
mapping settings are specified application-wide.

  1 :semVisExampleMapableProperties rdf:type map:MapablePropertiesSet ;
  2  map:mapableProperties ( 
  3   hist:hasStartTime
  4   mid:relatedToFieldOf
  5   mid:importance
  6   ) ;
  7 .

Example 7.12. User Limitations of the Mapping

7.4.6. Initial Settings
The Admin provides initial settings for the User regarding the Filtering, the Structur-
ing, the selection of Primaries and the display settings, i.e. the mapping. These are de-
fined as SPARQL queries for the filtering settings and with the Fresnel vocabulary for
Primaries, Structuring and Formatting. For the initial mapping settings, the SemVis
mapping vocabulary is used.

5Namespace: http://simile.mit.edu/2006/01/ontologies/fresnel-facets
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7.5. Comparison to the Graphical Modelling
Framework — GMF
The architecture of SemVis has some similarities to the architecture of the Graphical
Modeling Framework for Eclipse [GMF]. Especially for those, who are familiar with
the GMF, this section offers a comparison of the working principles of SemVis and
the GMF. For those who do not know the framework, the next paragraph gives a short
introduction.

7.5.1. Short Overview of the Graphical Modelling
Framework
The GMF enables programmers to quickly build a graphical editor based on a model
of the domain and an additional description of tools and graphics of the editor.

At the beginning stands the Domain Model, which is represented in Ecore, the meta
model that is used by the Eclipse Modelling Framework (EMF). Additionally, there
might be existing descriptions of graphical elements and tools. If not, the GMF can
help with creating these definition files by deriving default settings for tools and graph-
ics based on the Domain Model (c.f. Figure 7.7). GMF distinguishes between figures,
which can be any graphical element, such as Line or Rectangle, and Nodes, which carry
semantics such as Relation or InfoBox.

After further refining the derived Graphical Definition and Tool Definition, the domain
elements can be mapped to the tools and graphics in the Mapping Model.

If this is done, the GMF can use the Mapping Model to automatically create a Generator
Model (the PIM, describing the diagram editor) and proceed with generating the editor
code (the PSM).

Figure 7.7. Architecture of the Graphical Modelling Framework
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Figure 7.8. Architecture of SemVis

7.5.2. Comparison to SemVis
Figure 7.8 shows the SemVis architecture from an GMF point of view that allows to
compare both frameworks to each other. The filtering aspects of SemVis are left out
for a simplification.

The Domain Model of the GMF has its equivalent in the domain ontologies of SemVis.
While the GMF expects the model to be written in Ecore, SemVis expects it to be writ-
ten in RDF(S) and OWL. The Graphics.owl ontology and further display knowledge
files play the role of the Graphical Definition Model. Both frameworks aim at creating
an interactive GUI, but since SemVis does not generate editors but browsers and doc-
uments, it needs no Tooling Definition.

The Derive tasks of the GMF framework, which use the Domain Model to automatically
suggest initial Tooling Definition and Graphical Definition, have a similar function as
the components of SemVis, which suggest settings for the mapping and filtering con-
figuration. However, in SemVis the system does not derive the graphical knowledge
from the domain model, but uses both to derive suggestions for the mapping. The sug-
gestions are then refined by the Admin into the final mapping-definition.n3.

The Mapping Model of the GMF has its counterpart in the mapping-definition.n3 file.
The resulting PIM of the mapping that is called Generator Model in GMF is represent-
ed by the SemVis Model (The transformation steps are simplified in the diagram). Both
frameworks require a new build of the GUI after changes have been made to the map-
ping. In the case of SemVis it would be beneficial to allow a dynamic change of the
mapping at runtime, continuously changing the view.

It is also common to both frameworks, that they can generate code for multiple end pre-
sentation platforms. The GMFs Generator Model can be used to generate code in other
languages than Java and the templates of SemVis also allow to output code in arbitrary
languages. But in the question of separation of content and presentation knowledge,
SemVis and the GMF work differently. While the GMF separates the data from the
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presentation code and loads the data into the editor, SemVis combines the presentation
code and the data for the time being.
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Chapter 8. Visualization Platforms
SemVis is independent of a specific Visualization Platform and can be used to generate
code for several platforms by using a template mechanism. Possible output formats
include XHTML, SVG, X3D and plain text. This chapter shows examples of these
presentation platforms and discusses their advantages and disadvantages in transporting
information.

8.1. Extensible 3D (X3D)
X3D is the successor of VRML, the Virtual Reality Markup Language, already intro-
duced in 1995. It became an ISO standard for the description of 3D scenes in 2004,
[X3D]. The internal representation of the model as Java Objects, allows for complex
computations of the structure and mutual influences between the model elements, which
is particularly important for the positioning of elements in 3D space.

Since most final output devices are two dimensional, a 3D visualization does only in
some cases offer an added value. Often a 2D representation is better readable on a 2D
display device. Yet the third dimension is a valuable additional Visual Variable that
can be assigned semantics to. A 3D visualization of RDF data can be used in a virtual
reality environment like a CAVE1, where these advantages can be directly used. Here
the impression of a virtual world constructed from knowledge could be generated.

However, the advantages, gained from the third dimension are easily absorbed if the
navigation is not appropriate and does not support the user in doing her tasks actively,
since navigation in three dimensional scenes is disproportionately more complicated.
Although some real 3D input devices exist, users have to learn using them before they
can start exploring or manipulating the scene as easy as in 2D. Another drawback is
the still bad readability of text in 3D scenes. This is partly due to insufficient resolution
and antialiasing capabilities, but also an inherent problem of the perspective squeezing
of the text. Billboard2 behaviors can help to overcome these problems in some cases.

Since X3D is a documentation format, it describes the scene in a declarative way. Still
complex interaction and dynamic creation of scene elements can be achieved via the
Scene Access Interface (SAI). ECMAScript3 or Java classes can be addressed with this
interface.

Figure 8.1 shows a screenshot of a generated X3D scene, corresponding to the examples
from Section 7.2. The other, Figure 8.2 displays data from the history domain. Both
scenes are viewed with the Flux Player4.

1CAVE — Cave Automatic Virtual Environment. A cubic room with projectors directed to most of its sides
to enable an immersive virtual reality.
2Billboard is the behavior of constantly orientation to the user. This way, the objects become viewpoint
independent (in regard to the rotation).
3The standardized variant of JavaScript
4Flux Player is a free player for X3D: http://www.mediamachines.com
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Figure 8.1. Example of X3D Output — US Presidents

Figure 8.2. Example of X3D Output — Events of History

8.2. Scalable Vector Graphics (SVG)
Scalable Vector Graphics is a standard for the description of vector graphics in 2D,
since 2001 defined by an W3C recommendation, [SVG]. It uses an XML syntax and
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integrates [SMIL] to define animations. Interaction can be achieved with the help of
ECMA Scripts3 that can access the DOM of the vector graphic. The definition of styling
attributes with CSS is supported.

Figure 8.3 shows the example data (US presidents) rendered from SVG. The color states
the party, the president belongs to and the y-position represents his affiliation to a par-
ticular religion. The facets term, party, religion, birth, birthPlace, death and deathPlace
are additionally rendered as text. Note that vTalues from the facet term are styled dif-
ferently than the others.

Figure 8.3. Example of SVG Output — US Presidents

8.3. XHTML + CSS
The output of XHTML and CSS files can be generated with an XHTML JET template.
Again ECMA Script3 can be integrated to implement interactive features and animation.

8.4. Text
The size and color of simple text can be used to carry meaning in addition to the texts
content. This is implemented by TagClouds5, for example. SemVis can also be used to
easily generate such a formated text, using an XSL-FO6 template for JET. An example,
again showing data from the domain of history, is presented in Figure 8.4. The font-
color and the font-size are both mapped to the importance of historical events7.

5Collections of tags written in different size depending on their number of usages
6XSL-FO — XSL Formatting Objects: A markup language for formatting of documents in XML
7The importance values are assigned randomly to the example data and do not reflect real facts.
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Figure 8.4. Example of PDF Output — Events of History
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Chapter 9. Outlook and Conclusion
This section mentions ideas, not implemented nor described in detail, defines what
SemVis is not intended to do and concludes which of the initial goals could be fulfilled
by SemVis.

9.1. Advanced Mapping Vocabulary
The mapping vocabulary has to be expanded and refined in order to allow the handling
of multiple source facet value types at the same time (e.g. the facet happendIn, pointing
to years, decades etc.). If possible OWL DL solutions should be preferred to the OWL
FULL restrictions that are utilized. Furthermore MathML as a standard vocabulary for
the mathematical aspects of visualization should be reused.

9.2. Reusing Standardized Ontologies
As soon as mature, universal and generally accepted ontologies are established in the
field of visualization or graphics, these should replace the basic Graphics.owl ontology
that was constructed for this work in absence of a usable standard ontology. However,
the ideas of SemVis may be taken as a recommendation to build upon or may be inte-
grated in such a future generic visualization ontology.

9.3. Enabling Dynamic, Interaction and Anima-
tion
Little efforts have been spent on the support of interaction and dynamic features of the
final presentation at the present state. However, this is important for a convenient usage
of SemVis as a browser or editor.

Table 9.1 summarizes the constraints of the presentation platforms in regard to dynamic
criteria. All of the three platforms mentioned below do generally support animation,
interaction and even dynamic content loading.

 X3D Java3D SVG

Animation while
viewing the
presentation

Yes, via event
routes and/or
ECMAScript

or Java classes
using the SAI

Yes, with Behaviors Yes, with SMIL

Interaction while
viewing the
presentation

Yes, via event
routes and/or
ECMAScript

or Java classes
using the SAI

Yes, with Behaviors Yes, via the DOM
using ECMAScript

Loading of addi-
tional data, creating
nodes in the scene

Yes, via EC-
MAScript or Ja-

va classes us-
ing the SAI

Yes, directly via
the Java3D API.
Some capabili-

ties have to be set

Yes, via the DOM
using ECMAScript

Table 9.1. Comparison of Dynamic Possibilities between X3D, Java3D and SVG

Especially the filtering of contents by restriction of facet values should be also possible
via the user interface and lead to a dynamic change of the presented data while changing
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the filter settings or mapping. The view of the user should be continuously changed
within an animation, to preserve the users orientation.

To achieve this, the staged transformation pipeline has to be modified in a way that small
parts can be separately exchanged and the transformation is incrementally performed.
Also the use of a cashing mechanism would be advantageous to avoid expensively
calculating and querying unmodified parts of the visualization again and again.

An important way of interaction is the editing of the presented data. A prerequisite for
the editor functionality is the existence of an inverse transformation to transform the
changes in the visualization back to the domain model.

9.4. Implementation and Evaluation
The prototypical implementation needs to be updated and the GUI as an essential part
of the framework needs to be enforced. Although the mapping and the Fresnel defini-
tion can be done with a text editor, or more conveniently (but only partially) with the
universal RDF(S)/OWL editor Protégé, a tailored GUI is required to offer the full ben-
efit of SemVis. This is the most urgent step to take in order to evaluate the usefulness
for domain experts.

9.5. Conclusion
After having shown the general need for a generic solution for visualization of struc-
tured data, we presented SemVis as a flexible framework for the definition of presen-
tation knowledge for visualization on several visualization platforms. As this is work
in progress, the vocabularies have to be refined and solutions to support also interactive
features have to be found. Still the main goals could be fulfilled:

The visualization is highly flexible and configurable due to an exchangeable display
definition and a variable visualization platform.

Two vocabularies have been developed for this purpose. First, the Mapping.owl ontol-
ogy for a declarative, presentation-platform-independent definition of mappings from
facets of the data to Visual Variables and second, the Graphics.owl ontology, providing
general terms of visualization and graphics. The use of ontologies for this purpose in-
creases reusability, as does the integration of current standards from the semantic web,
such as the Fresnel RDF display vocabulary and the query language SPARQL.

The visualization can be applied to arbitrary structured data in the RDF format, at the
cost of writing new mapping and configuration files, but making changes to the source
code unnecessary. This way domain independence is achieved.

Although the visualization process is semi-automatic, it is to a high degree supported
by the system and allows for fit-tailored visualizations. The GUI, supporting the user,
can make use of common visualization knowledge (such as facts from cognition) and
characteristics of the data (such as metrics and structure) to reduce the set of possible
mapping choices for the user.

This way the drawbacks of the former framework have been resolved and additionally
platform independence has been gained.

Although only implemented in pieces at the time being, the basis for a framework has
been established that can be used to give format free, structured data, coming from
the semantic web or other yet unknown sources, a shape that is human understandable
while still preserving the advantages of complex filtering that is possible with machine
understandable data.
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Glossary
Facet A property of a class in its role of slicing the available

instances of this class

Facet Structure The topology formed by a relation between the facet
values. There can be several relations.

Filter A restriction on property values, that reduces the ini-
tial set of instances

Fresnel An RDF display vocabulary [FRESNEL]

Mapping If not further described, a mapping means the mapping
from a facet to Visual Variable

Primary An ontology class, that is intended to be used as a start-
ing point and has increased importance for the pre-
sentation (c.f. the section called “Starting Points (Pri-
maries)”)

Template Fraction of code, which is combined with dynamic
values by a template engine

Value Range The span from the minimum to the maximum value of
a facet or a Visual Variable

Visualization Platform The final presentation language for which SemVis
outputs the platform specific code

Visualization Structure A visualization structure describes the characteristics
of the structure that is the result of a technique of visu-
alization, including the shape, and suitability for dif-
ferent presentation scenarios, but not the technique it-
self.

Visual Variable A dimension or property of a graphical element ac-
cording to [Ber81]. Also referred to as elements of a
graphical vocabulary, according to [Zeh04]

Files
fresnel-definition.n3 An example file for the display settings of Fresnel.

Graphics.owl General graphical knowledge and facts includ-
ing VisualVariables and their VisualVal-
ues. URL: "http://www.polowinski.de/ontologies/
Graphics.owl"

Mapping.owl The SemVis mapping vocabulary

mapping-definition.n3 The facts about a specific mapping. Uses the vocabu-
lary from Mapping.owl

user-limitations-facts.n3 The limitations the Admin makes to the user regarding
properties for filtering and mappable properties

visualization-platforms-
facts.n3

A description of the graphical power of a platform.
URL: "http://www.polowinski.de/ontologies/Visual-
ization-Platforms.owl"
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Appendix A. 
This chapter lists the schemata, classes and example files in detail.

A.1. Schemata
This section shows the schemata, used within SemVis.

A.1.1. Fresnel Tree Output Schema
The following schema is used by the Fresnel Engine.

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
   <xsd:annotation>
     <xsd:documentation xml:lang="en">
       Schema for Fresnel output results.
     </xsd:documentation>
   </xsd:annotation>

   <xsd:element name="results" type="FresnelResults"/>

   <xsd:complexType name="FresnelResults">
     <xsd:sequence>
       <xsd:element name="resource" type="FresnelResource"
 minOccurs="0" 
         maxOccurs="unbounded"/>
     </xsd:sequence>
   </xsd:complexType>

   <xsd:complexType name="FresnelResource">
     <xsd:sequence>
       <xsd:element name="content" type="FresnelContents" minOccurs="0"
 
         maxOccurs="1"/>
       <xsd:element name="title" type="xsd:string" minOccurs="1" 
         maxOccurs="1"/>
       <xsd:element name="property" type="FresnelProperty"
 minOccurs="1" 
         maxOccurs="unbounded"/>
     </xsd:sequence>
     <xsd:attribute name="class" type="xsd:string"/>
     <xsd:attribute name="uri" type="xsd:string"/>
   </xsd:complexType>

   <xsd:complexType name="FresnelProperty">
     <xsd:sequence>
       <xsd:element name="content" type="FresnelContents" minOccurs="0"
 
           maxOccurs="1"/>
       <xsd:element name="label" type="FresnelLabel" minOccurs="1" 
           maxOccurs="1"/>
       <xsd:element name="values" type="FresnelValues" minOccurs="1" 
           maxOccurs="1"/>
     </xsd:sequence>
     <xsd:attribute name="class" type="xsd:string"/>
     <xsd:attribute name="uri" type="xsd:string"/>
   </xsd:complexType>

   <xsd:complexType name="FresnelValues">
    <xsd:sequence>
      <xsd:element name="contents" type="FresnelContents" minOccurs="0"
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         maxOccurs="1"/>
      <xsd:element name="value" type="FresnelValue" minOccurs="1" 
         maxOccurs="unbounded"/>
    </xsd:sequence>
   </xsd:complexType>

   <xsd:complexType name="FresnelValue">
    <xsd:choice>
      <xsd:element name="title" type="xsd:string" maxOccurs="1"/>
      <xsd:element name="resource" type="FresnelResource"
 maxOccurs="1"/>
    </xsd:choice>
    <xsd:attribute name="class" type="xsd:string"/>
    <xsd:attribute name="output-type" type="xsd:string"/>
   </xsd:complexType>

   <xsd:complexType name="FresnelLabel">
    <xsd:sequence>
      <xsd:element name="contents" type="FresnelContents" minOccurs="0"
 
         maxOccurs="1"/>
      <xsd:element name="title" type="xsd:string" minOccurs="1" 
         maxOccurs="1"/>
    </xsd:sequence>
    <xsd:attribute name="class" type="xsd:string"/>
   </xsd:complexType>

   <xsd:complexType name="FresnelContents">
    <xsd:sequence>
      <xsd:element name="before" type="xsd:string" minOccurs="0" 
         maxOccurs="1"/>
      <xsd:element name="after" type="xsd:string" minOccurs="0" 
         maxOccurs="1"/>
      <xsd:element name="first" type="xsd:string" minOccurs="0" 
         maxOccurs="1"/>
      <xsd:element name="last" type="xsd:string" minOccurs="0" 
         maxOccurs="1"/>
    </xsd:sequence>
   </xsd:complexType>

</xsd:schema>

A.1.2. SemVis Output Schema
SemVis can generate the XML output according to the following schema:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
  <xsd:documentation xml:lang="en">
   Schema for SemVis output results.
  </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType name="VisualizationElement">

  <xsd:attribute name="visible" type="xsd:boolean" />
  <xsd:attribute name="content" type="xsd:string" />
  <xsd:attribute name="fontSize" type="xsd:float" />
  <xsd:attribute name="color" type="xsd:string" />
  <xsd:attribute name="size" type="xsd:float" />

  <xsd:attribute name="width" type="xsd:float" />
  <xsd:attribute name="height" type="xsd:float" />
  <xsd:attribute name="depth" type="xsd:float" />
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  <xsd:attribute name="xPos" type="xsd:float" />
  <xsd:attribute name="yPos" type="xsd:float" />
  <xsd:attribute name="zPos" type="xsd:float" />

 </xsd:complexType>

 <xsd:complexType name="VisualizationBox"></xsd:complexType>

 <xsd:element name="visualizationStructure"
  type="VisualizationStructure" />

 <xsd:complexType name="VisualizationStructure">
  <xsd:sequence>
   <xsd:element name="resourceVisualization"
    type="ResourceVisualization" minOccurs="0" maxOccurs="unbounded" />
    <xsd:sequence minOccurs="0" maxOccurs="unbounded"
   type="scaleItem">
   <xsd:element name="scaleItem" type="ScaleItem" minOccurs="1"
    maxOccurs="unbounded" />
  </xsd:sequence>
  </xsd:sequence>
  
 </xsd:complexType>

 <xsd:complexType name="ResourceVisualization">
  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:sequence>
     <xsd:element name="staticContentVisualization"
      type="StaticContentVisualization" minOccurs="1" maxOccurs="1" />
     <xsd:element name="propertyVisualizationBox"
      type="PropertyVisualizationBox" minOccurs="0" maxOccurs="1" />
    </xsd:sequence>
    
    <xsd:attribute name="cycleDegree" type="xsd:float" />
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="StaticContentVisualization">
  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:sequence>
     <xsd:element name="label" type="LabelVisualization"
      minOccurs="1" maxOccurs="1" />
     <xsd:element name="description"
      type="MultilineTextVisualization" minOccurs="0" maxOccurs="1" />
    </xsd:sequence>
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="PropertyVisualizationBox">
  <xsd:complexContent>
   <xsd:extension base="VisualizationBox">
    <xsd:sequence>
     <xsd:element name="propertyVisualization"
      type="PropertyVisualization" minOccurs="1" maxOccurs="unbounded"
 />
    </xsd:sequence>
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="PropertyVisualization">
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  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:sequence>
     <xsd:element name="labelVisualization"
      type="LabelVisualization" minOccurs="1" maxOccurs="1"/>
     <xsd:element name="valueVisualizationBox"
      type="ValueVisualizationBox" minOccurs="1" maxOccurs="1"/>
    </xsd:sequence>
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ValueVisualizationBox">
  <xsd:complexContent>
   <xsd:extension base="VisualizationBox">
    <xsd:sequence>
     <xsd:choice>
      <xsd:element name="valueVisualization"
       type="ValueVisualization" minOccurs="1" maxOccurs="unbounded" />
      <xsd:element name="resourceVisualization"
       type="ResourceVisualization" minOccurs="1" maxOccurs="unbounded"
 />
     </xsd:choice>
    </xsd:sequence>
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="ValueVisualization">
  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:sequence>
    
    </xsd:sequence>
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="LabelVisualization">
  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:attribute name="spacing" type="xsd:float" />
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="MultilineTextVisualization">
  <xsd:complexContent>
   <xsd:extension base="VisualizationBox">

   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>
 
 <xsd:complexType name="ScaleItem">
  <xsd:complexContent>
   <xsd:extension base="VisualizationElement">
    <xsd:attribute name="cycleDegree" type="xsd:float" />
   </xsd:extension>
  </xsd:complexContent>
 </xsd:complexType>

</xsd:schema>




